Интенсификация физико-химических процессов СВЧ-энергией в регенерационной системе жизнеобеспечения экипажа космического корабля (31.08.2009)

Автор: Климарев Сергей Иванович

- для нагрева рациона питания как в радиопрозрачной, так и в металлической упаковке;

- для стерилизации мелкого металлического медицинского инструмента;

- для нагрева воды в потоке при принятии водных процедур, душа;

- для образования пара в бане;

- для сушки фекальной массы с целью получения сухого порошкообразного остатка.

Кроме основного назначения для СЖО КК СВЧ-энергия может быть использована для интенсификации технологических процессов применительно к гипербарическим, подземным, наземным и другим специальным гермообъектам; в народном хозяйстве: в пищевой, медицинской и микробиологической промышленности для стерилизации пищевых жидкостей, вакцин, сывороток, жидких лекарственных препаратов и питательных сред; в системе МЧС.

Таким образом, на основании проведенных теоретических и экспериментальных исследований можно сделать основное заключение о том, что СВЧ-энергия может быть эффективно использована для интенсификации физико-химических процессов в регенерационной системе жизнеобеспечения экипажа космического корабля.

1. Обоснована эффективность применения СВЧ-энергии для интенсификации физико-химических процессов в регенерационной системе жизнеобеспечения. Показана необходимость интенсификации процессов переработки диоксида углерода и водорода, регенерации твердого и жидкого сорбентов диоксида углерода и водорода, обеззараживания и нагрева воды, формирующих облик быстродействующей системы жизнеобеспечения нового поколения.

2. Составлено математическое описание динамики физико-химических процессов переработки диоксида углерода и водорода, регенерации твердого и жидкого сорбентов диоксида углерода и водорода, обеззараживания и нагрева воды. На основании термодинамических расчетов получены зависимости от температуры степени превращения диоксида углерода и основных продуктов реакции, составлено описание процесса нагрева и регенерации сорбентов диоксида углерода и водорода, с учетом электродинамики, термодинамики и гидродинамики разработана математическая модель канала СВЧ-устройства для обеззараживания и нагрева воды, подтверждающих эффективность использования СВЧ-энергии.

3. Разработан метод, устройство и технология плазмохимической переработки диоксида углерода и водорода в комбинированном СВЧ-и тлеющем разряде (первая стадия процесса Боша – гидрирование диоксида углерода). Сформирована низкотемпературная плазма при атмосферном давлении на смеси исходных реагентов в соотношении СО2/Н2 = 1/2 при суммарной подводимой в разряд мощности, не превышающей 1,0 кВт, при этом процесс переработки осуществляется со степенью превращения диоксида углерода 80,0% и расходе газовой смеси 45,0 л/мин.

4. Разработан метод, устройство и технология регенерации твердого и жидкого сорбента диоксида углерода под действием СВЧ-энергии. В этом случае объемный и быстрый нагрев твердого и жидкого сорбента осуществляется за счет диэлектрических свойств нагреваемой среды без участия механизма теплопроводности. При этом максимальная концентрация диоксида углерода в адсорбате составляет около 99% при существенном сокращении времени проведения процесса и энергозатрат.

5. Разработан метод, устройство и технология регенерации аккумулятора водорода на основе сплава LaNi5, способного поглощать водород, удерживать его с высокой плотностью в безопасном состоянии и выделять при нагреве. Размещение аккумулятора водорода между электролизером и системой переработки диоксида углерода и водорода обеспечивает взаимосвязь этих узлов по потоку водорода.

6. Разработан метод, устройство и технология СВЧ-обеззараживания и нагрева воды в потоке системы жизнеобеспечения. В СВЧ-устройстве вместо цилиндрического канала используется экспоненциальный канал, что обеспечивает снижение температуры гибели Pseudomonas aerugenosa на 5(С, увеличивает производительность на (23%, снижает затраты энергии на (23% при КПД преобразования СВЧ-энергии в тепловую 78%.

7. Оценка совместной работы узлов и блоков регенерационной физико-химической системы с использованием СВЧ-энергии подтверждает возможность осуществления процесса переработки диоксида углерода и водорода в проточной системе с возвратом непрореагировавших диоксида углерода и водорода в цикл.

8. Разработанные СВЧ-устройства по своим конструктивным особенностям и организации физико-химических процессов обеспечивают безопасное функционирование регенерационной системы жизнеобеспечения экипажа космического корабля.

Список работ, опубликованных по материалам диссертации

1. Klimarev S.I. Microwave Sterilizer of Potable Water in Stream. SECOND INTERNATIONAL AEROSPACE CONGRESS (IAC(97). August 31-September 5,1997. Moscow, Russia. V.1. P. 245-246.

2. Klimarev S.I., Ilyin V.K., Smirenny A.L. Microwave Sterilizer of Potable Water in Stream. The Third International Conference on Life Support and Biosphere Science. Lake Buena Vista, Florida, USA. January 11-14, 1998. 6 p.

3. Klimarev S.I. Hydrogen Sorbtion-Desorbtion Mode in the System of Hydrogen and Carbon Dioxide Treatment. The Third International Conference on Life Support and Biosphere Science. Lake Buena Vista, Florida, USA. January 11-14, 1998. 5 p.

4. Klimarev S.I., Ilyin V.K., Smirenny A.L. Microwave Sterilizer of Potable Water in Stream. The 28-th International Conference on Environmental Systems. Denvers, Massachusetts, USA, July, 13-16, 1998. SAE Technical Paper Series 981539. P. 1-6.

5. Klimarev S.I. Hydrogen Sorbtion-Desorbtion Mode in the System of Hydrogen and Carbon Dioxide Treatment. Denvers, Massachusetts, USA, July, 13-16, 1998. SAE Technical Paper Series 981540. P. 1-5.

6. Ilyin V.K., Klimarev S.I. et al. The Basic Principles of Deep Divers Anti-Infectional Safety. Proceeding of International Conference on High Pressure Biocience and Biotechnology. Heidelberg, Germany. August 30-September 3, 1998. P. 573-576.

7. Климарев С.И., Ильин В.К., Старкова Л.В. Исследование комбинированного воздействия сверхвысокочастотной энергии и металлического серебра на воду в потоке с целью ее обеззараживания. Третий Международный Аэрокосмический Конгресс (МАКС 2000). Россия, Москва, 23-27 августа. 2000. Сбоник докладов.3 с.

8. Климарев С.И., Ильин В.К., Старкова Л.В. Система для микроволнового обеззараживания и нагрева санитарно-гигиенической воды глубоководного водолазного комплекса. Российская конференция (Организм и окружающая среда: жизнеобеспечение и защита человека в экстремальных условиях(. Москва. Россия. 26-29 сентября. 2000. С. 205-206.

9. Климарев С.И., Смиренный А.Л., Загибалова Л.Б., Старкова Л.В. Влияние микроволновой энергии на воду, зараженную вегетативными формами микроорганизмов. Авиакосмическая и экологическая медицина. 2000. Т. 34. № 6. С. 51-54.

10. Климарев С.И. Перспективы использования электромагнитного поля сверхвысокой частоты для интенсификации технологических процессов при разработке физико-химических систем жизнеобеспечения нового поколения. Материалы Российской конференции (Проблемы обитаемости в гермообъектах(. Москва. 4-8 июня 2001. С. 87-89.

11. Ilyin V.K., Klimarev S.I. et al. The Basic Principles of Deep Divers Infectional Safety. The 1-st International Cancer & Aids Conference. September 15, 2001. Seoul. P. 66-72.

12. Климарев С.И. Перспективы применения энергии сверхвысокой частоты в системах жизнеобеспечения человека. Авиакосмическая и экологическая медицина. 2002. Т. 36. № 6.

С. 61-64.

13. Климарев С.И. Выбор типа СВЧ-плазмотрона для переработки диоксида углерода и водорода в физико-химической системе жизнеобеспечения. Авиакосмическая и экологическая медицина. 2003. Т. 37. № 1. С. 64-67.

14. Климарев С.И. СВЧ-устройство для переработки диоксида углерода и водорода в СЖО. Четвертый Международный Аэрокосмический Конгресс (МАКС 2003). Россия, Москва, 2003, 18-23 августа. Сборник докладов. 3 с.

15. Климарев С.И., Синяк Ю.Е., Сысоев А.Б. Установка водоподготовки с СВЧ-стерилизацией воды. Материалы Российской конференции (Организм и окружающая среда: адаптация к экстремальным условиям(. 2003. 19-21 октября. Москва. С. 164-165.

16. Климарев С.И. Обзор. Выбор типа СВЧ-разряда для переработки диоксида углерода и водорода в физико-химической системе жизнеобеспечения. Авиакосмическая и экологическая медицина. 2004. Т. 38. №. 1. С. 5-14.

17. Климарев С.И. СВЧ-десорбция диоксида углерода из жидкостного регенерируемого поглотителя в физико-химической системе жизнеобеспечения человека. Авиакосмическая и экологическая медицина. 2004. Т. 38. № 4. С. 57-60.

18. Климарев С.И. СВЧ-десорбция диоксида углерода из цеолита в физико-химической системе жизнеобеспечения человека. Авиакосмическая и экологическая медицина. 2005. Т. 39. № 1. С. 47-51.

19. Климарев С.И., Попов В.В. Аппарат для термообработки органических отходов в СЖО. Материалы ХIII конференции по космической биологии и авиакосмической медицине. 13-16 июня. 2006. Москва. Россия. С. 139.

20. Климарев С.И. Исследование сорбции-десорбции водорода интерметаллидом в физико-химической СЖО. Авиакосмическая и экологическая медицина. 2007. Т. 41. № 5. С. 56-60.

21. Климарев С.И., Ильин В.К., Старкова Л.В. Обзор. Выбор метода и типа устройства для обеззараживания и нагрева воды в физико-химической СЖО. Авиакосмическая и экологическая медицина. 2008. Т.42. № 4. С. 3-14.

22. Климарев С.И. СВЧ-устройство для обеззараживания и нагрева воды в СЖО. Авиакосмическая и экологическая медицина. 2008. Т. 42. № 6/1. С. 88-89.

Технические решения защищены авторскими свидетельствами на изобретения №№: 605616, 715491, 894906, 939869, 996334, 1123705, 1139439, 1266113, 260268, 269576, 295683, 1481935.


загрузка...