Разработка системы многоаспектной оценки технического состояния и обслуживания высоковольтного маслонаполненного электрооборудования (31.08.2009)

Автор: Давиденко Ирина Васильевна

Рисунок 3 - Лепестковые диаграммы результатов АРГ

Известные графические методы идентификации дефектов (диаграмма состава газов относительно газа с максимальной концентрацией, предложенная японскими учеными, треугольник Дюваля, прямоугольники Доренбурга, параллелепипеды Кудерка), по сравнению с предложенной моделью, используют меньшее число газов, не описывают область исправного состояния объекта и не учитывают, насколько концентрации газов превышают свои ДЗ.

На первом этапе диагностики для выявления наличия развивающегося дефекта на лепестковой диаграмме в абсолютных значениях строятся образ состояния диагностируемого объекта по результатом АРГ и соответствующий ему образ ДЗ, зависящий от конструктивных особенностей и срока эксплуатации объекта. Если образ, описывающий диагностируемый объект выходит за пределы области, ограниченной образом ДЗ (заливка серым цветом на рисунке 3), то предполагается наличие развивающегося дефекта. Динамику роста газов можно увидеть, расположив образы, описывающие состояния объекта по оси времени. Сравнив скорости прироста газов с их ДЗ и ПДЗ, делаем вывод о том, быстро ли развивается дефект, и переходим к этапу его идентификации.

Логично предположить, что если конструктивные особенности оборудования влияют на образ его исправного состояния, то они должны влиять и на образ дефекта. Образы дефектов хранятся в виде относительных значений содержания газов, нормированных по взвешенной сумме концентраций семи

газов. Для того чтобы образ дефекта описывал состояние оборудования более точно, применяется следующая процедура его трансформации. Денормируем образы дефектов, умножив их на взвешенную сумму выбранного b-го образа исправного состояния SZb, и трансформируем образы дефектов, умножив их координаты на соответствующие коэффициенты трансформации Rib:

где Qiy – i-координата y-го образа дефекта в относительных единицах;

, (16)

где Zib – ДЗ концентрации i–го газа b-го образа исправного состояния в абсолютных величинах; N - количество образов ДЗ; n, b- индексы образов ДЗ.

Затем снова нормируем образы дефектов по взвешенной сумме:

где SQ*y – взвешенная сумма концентраций газов y-го денормированного образа дефекта.

Далее трансформированные образы масштабируются таким образом, чтобы взвешенная сумма газов образа была равна взвешенной сумме газов диагностируемого объекта.

где SO – взвешенная сумма концентраций газов диагностируемого объекта.

Распознавание дефекта производится в геометрической трактовке путем вычисления меры близости по среднеквадратичному критерию, взвешенному в соответствии с образами дефектов по формуле:

, (19)

где xi - координата образа диагностируемого объекта, соответствующая i-му газу и нормированная по взвешенной сумме газов; QMiy – i-координата масштабируемого образа y-го дефекта; hiy - весовой коэффициент.

Минимальное значение меры близости укажет нам на дефект в диагностируемом объекте. На заключительном этапе распознавания вводится величина, названная “мера родства” dF, позволяющая считать меры близости Fy для различных классов типовых дефектов одинаковыми. Это решение учитывает то, что при проведении АРГ хроматографическим методом погрешность измерения может достигать 20% и более, а также то, что существует неустойчивость, неоднозначность распознавания различных

классов состояния по ряду причин: наличия более одного дефекта; наличия некоторого “фона”, связанного с эксплуатационными причинами (доливка некачественного масла, более жесткий режим работы оборудования, плохая дегазация на заводе-изготовителе и т.д.); нахождения объекта в стадии изменения характера дефекта; нахождения объекта в стадии развития (усугубления) дефекта, т.е. в стадии перехода от одного класса состояния в другой в пределах одной области. Для определения величины “меры родства” dF для каждого класса состояния определяем меру близости Fy координат его образа от координат образов других дефектов из одной области состояний. Далее из всех возможных значений меры близости одной области выбираем минимальное значение, которое и будет искомой мерой родства dFa для области a:

, (20)

где Qiy, Qiy-1 – i-координаты образов двух дефектов, принадлежащих одной области состояний, y - номер дефекта; Ua - общее число значений мер близости Fy, рассчитанное для одной области состояния, которое зависит от L -количества входящих в эту область классов состояния и определяется по формуле:

Используя необходимую величину “меры родства” dFa, проверяем два дефекта с минимальными мерами близости, следующих за выбранным дефектом F1, могут ли они считаться “одинаково похожими” на образ диагностируемого объекта, т.е. выполняется ли равенство:

- мера родства для областей состояния Gk, которым принадлежат проверяемые классы состояний F2 и F3.

Далее из выбранных образов дефектов, которые считаем "одинаково похожими", для сведения к минимуму ущерба от ошибочного распознавания дефекта, выбираем типовой дефект с максимальным коэффициентом опасности: max(C1,C2,C3). Если после учета коэффициентов опасности неоднозначность в распознавании дефекта осталась, то из дефектов, которые считаем "одинаково похожими и одинаково опасными", выбираем дефект с максимальным коэффициентом вероятности: max(P1,P2,P3).

Значения коэффициентов опасности дефектов определялись на основании экспертных оценок, а коэффициенты вероятности их возникновения рассчитывались на основании статистики повреждаемости данного вида оборудования. Предложенный способ идентификации дефектов с помощью новой графической модели обладает более широкими возможностями по точности и диапазону распознаваемых дефектов, исключает нераспознаваемые состояния объекта. Предложенная графическая интерпретация АРГ,

дополненная алгоритмом распознавания образов и методикой синтеза классов технического состояния, не уступает возможностям нейронной сети с функцией самообучения. Вместе с тем, этот альянс, позволяет эксперту без участия программиста добавлять новые образы, обладает наглядностью, задействует образное мышление человека, а значит, делает процесс анализа информации по диагностике оборудования более эффективным.

Для получения критериев распознавания класса технического состояния ТТ и ТН по результатам АРГ была собрана БД из 98 случаев фактов вскрытия. Далее был составлен словарь классов технического состояния ТТ и ТН с учетом соответствия между видами дефектов, причинами их возникновения и описанием последствий, обнаруженных после вскрытия оборудования. Затем собранные факты были проанализированы совместно с экспертами, отнесены к классам технического состояния и отмечены необходимыми метками. Используя третью методику были синтезированы 9 классов технического состояния для ТТ и 3 для ТН в виде графических образов, приведенных на рисунках 4-12 для ТТ и 13-15 для ТН.

Рисунок 4 - ЧР низкой энергии, старение

Рисунок 6 - ЧР и низкотемпературный нагрев (Х-воск)

Рисунок 7 - ЧР высокой энергии.

Рисунок 8 - Тепловой пробой изоляции

Рисунок 9 - ЧР низкой энергии и высокотемпературный нагрев

Рисунок 10 - Ионизационный пробой изоляции

Рисунок 11 - ЧР высокой энергии и высокотемпературный нагрев

Рисунок 12 - Сильный разряд (дуга)

Рисунок 13 - Сильные разряды и высокотемпературный нагрев

Рисунок 14 - Высокотемпературный нагрев, старение изоляционных материалов

Рисунок 15 - Высокотемпературный нагрев в результате феррорезонанса

Решение о выводе оборудования из работы должно приниматься на основании определения вида повреждения по результатам АРГ и подтверждения поставленного диагноза, по крайней мере, еще одним видом контроля. В главе приведены дополнительные диагностические параметры, необходимые для уточнения причины и вида повреждения в зависимости от характера развивающегося дефекта. Многоаспектная идентификация дефекта на основании нескольких видов контроля позволяет диагностировать состояние объекта с большей достоверностью. АРГ вводов, ТТ и ТН позволяет выявить дефект на ранней стадии его развития, своевременно поставить объект на контроль и провести необходимые дополнительные измерения, что предупреждает серьезные необратимые повреждения самого диагностируемого объекта и связанного с ним оборудования. Предложенные методики и способы идентификации дефектов могут использоваться для диагностики других видов маслонаполненного оборудования.

В шестой главе предложены методики для специалистов, занимающихся подготовкой и обоснованием управленческих решений в области инвестиций, политики ТО, включая диагностику и ремонты, кадровую политику и т.д.

Предложена методика планирования работ ТОиР с обозначением приоритетов выполнения на основе трех интегральных показателей, учитывающих оценку технического состояния, риски ущербов при отказе и стоимость эксплуатации оборудования.

По каждой единице оборудования подсчитывается интегральный показатель технического состояния объекта по формуле:


загрузка...