Расчетно-теоретические методы оценки эффективности систем воздушного охлаждения дизелей (31.05.2010)

Автор: Саибов Абдуназар Алиевич

Характеристика вариантов системы охлаждения.

Вариант 1 - серийный.

Вариант 2 - экспериментальная система, содержащая дополнительно

внутренние дефлекторы.

Вариант 3 - экспериментальная система, содержащая внутренние и

средние (ЭД145Т) дефлекторы, и анкерные шпильки

Д37М-1002028-А2 ( 9 мм.

Вариант 4 - экспериментальная система, отличающаяся:

- установкой анкерных шпилек Д37М-1002028-А2 диаметром 9 мм;

- измененной формой кожуха вентилятора;

- измененной формой средних дефлекторов, выполненных в виде

перегородок, объединяющих функции внутренних и средних

дефлекторов;

- укороченной длиной ребер цилиндров и их головок, а также вырезом

кормовой области ребер цилиндров ЭД145Т в форме ласточкина хвоста.

Основным методом исследования кинематики и динамики потока воздуха принято измерение статического и динамического давления в характерных точках тракта. Наряду с ним исследования проводились визуализацией траекторий движения сферических частиц пенопласта ( 2 мм под прозрачным кожухом вентилятора методом фотографирования и скоростной киносъемки.

Фотосъемка производилась камерой “Зенит-3М” с объективом “Юпитер-12” при продолжительности экспонирования 1/250 и 1/500 с. Киносъемка траекторий движения частиц осуществлялась скоростной камерой CKC-1M фронтально к боковой поверхности на расстоянии 1.0...2.0 м от объекта. Скорость съемки изменялась от 2000 до 4000 кадров в секунду. Просмотр отснятой и обработанной кинопленки осуществлялся на киноаппарате "Радуга" со скоростью 16 кадр/с.

Методика стендовых испытаний соответствует требованиям ГОСТ 18509-80 и заключается в снятии температурных полей цилиндров и их головок, на скоростных и нагрузочных характеристиках дизелей Д144 с четырьмя вариантами системы охлаждения.

Эксплуатационные испытания дизелей Д144 с тремя первыми вариантами системы охлаждения проводились в хозяйствах Хатлонской области Республики Таджикистан в течение календарного года на наиболее энергоемких операциях в хлопководстве:

- уборка хлопка хлопкоуборочными машинами 14XB-2.4;

- сбор недозревших коробочек хлопка МТА в составе трактора Т-28Х4М и

куракоуборочной машины СКО-4;

- корчевка стеблей хлопчатника МТА в составе трактора Т-28Х4М и

корчевателя КВ-4А.

Контролируемые параметры:

- вид и объем выполненных работ (в единицах наработки);

- календарные сроки и климатические условия при выполнении с. х. операции;

- температура и давление масла;

- температура цилиндров и головок;

- давление под кожухом вентилятора и в направляющем аппарате;

- степень загрязненности деталей системы охлаждения;

- периодичность и трудоемкость ТО системы охлаждения.

???????

10.5/12.0” приводятся результаты экспериментальных исследований, их анализ и оценка.

Из выполненных аналитических исследований следует, что при теплообмене вдоль каналов и в их поперечном сечении происходят существенные изменения теплофизических свойств влажного воздуха. Весьма чувствительными к влажности воздуха являются изобарная теплоемкость воздуха и число Прандтля, определяющие интенсивность теплопередачи, поэтому при проектировании систем воздушного охлаждения двигателей необходимо учитывать виртуальную составляющую.

Выдвинутая рабочая гипотеза о наличии характерных участков тракта, в которых кинематические и динамические характеристики потока воздуха зависят не только от напора, развиваемого вентилятором, но и собственно конструкцией дизеля экспериментально подтверждена.

Экспериментальное исследование фотографированием трассирующих меток показало, что кинематика и динамика потока воздуха сходящего с кромок лопаток ротора зависит не только от условий его формирования в направляющем аппарате, но и от координат и размеров препятствий, находящихся под кожухом вентилятора.

В сечении I-I (рис. 2) профиль потока полностью развитый. Здесь формируется втулочное течение по винтовой линии, задаваемой лопатками ротора вентилятора. Угол закрутки и скорость потока по периметру окружности изменяется в зависимости от координаты ввода частиц в направляющий аппарат. Для оценки этого эффекта направляющий аппарат условно разделен на 8 секторов, пронумерованных возрастанием против вращения часовой стрелки.

3720 мин-1 даже на расстоянии 845 мм от кромки удлинителя. При вводе частиц через сектор 7 – 8 скорость изменяется в пределах 16.7…35.48 м/с, а угол закрутки - 370 30’…720 30’. Введенные в зоне секторов 1 -2, 2 – 3, 4 – 5 и 5 – 6, трассирующие метки не попадают в поле зрения объектива, так как поток набегает на препятствия, а блики освещения размывают координаты их обтекания.

до 4315 мин-1 и вводе частиц в зоне сектора 7 – 8 скорость их возрастает до 37.84…65.32 м/с на всем протяжении тракта. При вводе частиц через сектор 8 – 1 среднее значение скорости составляет 26.60 м/с, а поле рассеивания параметра – 20.34…33.94 м/с; угол закрутки изменяется в диапазоне 300 30’…560 15’ при среднем значении 410 30’.


загрузка...