Нестационарные процессы деградации в щелочных аккумуляторах, закономерности и технологические рекомендации (30.11.2009)

Автор: Галушкин Дмитрий Николаевич

В остальном герметичные аккумуляторы подобны не герметичным с тем же типом электродов.

В седьмом разделе исследовалось газовыделение при термическом разложении электродов дисковых и цилиндрических аккумуляторов следующих типов Д-0,02С, Д-0,06Д, Д-0,09С, Д-0,26С, Д-0,26Д, Д-0,4С, НКГЦ-0,9, НКГЦ-1,3-2, НКГЦ-1,8-2, НКГЦ-3,5-2. Полученные результаты подобны результатам для герметичных аккумуляторов с учетом емкости данных аккумуляторов.

?????i?Ђ

?????x???????;

???????????o

???????????3

???????????c

???????????J

?????x???????;

????$????o????$????o

?????x???????d

???????????±

???????????d

???????????o

???????????n

????o ???????o ???????o

???????????o

???????????E

???????????o

???????????u

?????x???????h

???????????o

???????????i ???????h

(ВНЖ-250П-У2, ТНЖ-350-У5, ТНЖШ-400-У5, ТНЖШ-500-У5. Полученные результаты подобны результатам для НК аккумуляторов с ламельными электродами.

Четвертая глава состоит из тринадцати разделов и посвящена исследованию процесса дендритообразования, как одного из процессов деградации щелочных аккумуляторов.

В первом разделе на основании анализа литературных источников и экспериментальных данных, полученных в предыдущих разделах, намечен план экспериментальных исследований.

Во втором разделе разработан метод искусственного запуска теплового разгона в щелочных аккумуляторах. На основании проведенных исследований, можно утверждать, что точкой запуска теплового разгона является проросший через сепаратор дендрит. В предложенной установке роль дендрита выполняла стальная игла, которая с помощью микровинта максимально близко приближалась к оксидно-никелевому электроду через отверстие сбоку в корпусе аккумулятора и в кадмиевом электроде. Аккумулятор заряжался при постоянном напряжении 1,87 В в течении 8 часов. Когда ток заряда падал до предельно малого значения (примерно 100-150 мА) и не изменялся в течение получаса, включался ключ и подавалось напряжение 2,2; 2,4; 2,8 В между оксидно-никелевыми электродами и стальной иглой. При этом в месте расположения иглы создавалась значительно большая плотность тока, чем в среднем по электроду. Это достигалось как за счет более близкого расположения иглы, так и за счет более высокого напряжения, что способствовало началу теплового разгона. На основании данных экспериментальных исследований можно сделать следующие заключения:

-Тепловой разгон можно вызывать искусственно, что создает большие возможности для изучения этого опасного явления. С помощью предложенной установки с вероятностью около 80 % удавалось запустить аккумулятор на искусственный тепловой разгон.

-Эксперименты на физической модели дендрита однозначно показывают, что причиной начала возникновения теплового разгона является дендрит, проросший от кадмиевого электрода к оксидно-никелевому в процессе эксплуатации аккумуляторов. Проросший дендрит локально разогревает оксидно-никелевый и кадмиевый электроды, что способствует возникновению мощной экзотермической реакции, которая как будет показано в главе 5 и является причиной процесса теплового разгона.

Так как физическая модель дендрита находилась ровно в центре кругов прогорания сепаратора, то можно утверждать, что экзотермическая реакция начинается в месте расположения дендрита, а потом подобно процессу горения распространяется по радиусу от центра.

В третьем разделе анализируются методы борьбы с дендритообразованием в аккумуляторах, а именно: модификация состава или конструкции электродов; покрытие электродов проводящей пленкой; создание новых сепараторов, включая комбинированные; введение в электролит различных добавок включаю поверхностноактивные; использование новых переменноточных режимов заряда. Как мне кажется, наиболее перспективным является пятый метод. Он применим к серийно выпускаемым аккумуляторам, без каких либо их изменений.

В четвертом разделе на основании макрооднородной модели пористого электрода формулируется система уравнений для теоретического анализа распределения тока по глубине пористого электрода при поляризации электрода переменным асимметричным током.

В пятом разделе предлагаются методы для экспериментального нахождения поляризационной функции исследуемого электрода с целью дальнейшего их использования в сформулированной ранее макрооднородной модели пористого электрода.

В шестом разделе решается сформулированная модель пористого электрода в активационно-омическом режиме, при поляризации электрода постоянным током для линейной и квадратичной поляризационных функций. Из решения следует, что при увеличении внешнего поляризующего тока глубина проникновения электрохимического процесса в глубь пористого электрода уменьшается. Таким образом, в случае заряда аккумуляторов при постоянном токе единственным способом улучшения распределение тока по глубине пористого электрода является уменьшение самого поляризующего тока. Это действительно приводит к улучшению распределения тока по глубине пористого электрода и к уменьшению необходимого перезаряда, а, следовательно, и к уменьшению газовыделения при заряде. Однако, это приводит также и к значительному увеличению времени заряда, что не всегда приемлемо на практике.

В седьмом разделе анализируются наиболее перспективные формы тока для заряда аккумуляторов переменным асимметричным током.

В восьмом разделе решается сформулированная модель пористого электрода в активационно-омическом режиме, при поляризации электрода переменным асимметричным током для линейной, но не симметричной поляризационной функции. В девятом разделе решается та же модель, но с учетом процессов миграции и диффузии, т.е. система уравнений вида:

при граничных условиях

? половина толщины пористого электрода.

Анализ обоих решений позволяет утверждать, что применение переменного асимметричного тока при заряде аккумуляторов позволяет добиваться любого распределения количества прошедшего электричества по глубине пористого электрода, в том числе и равномерного распределения или распределения с максимумом в центре электрода. В случае равномерного распределения количества прошедшего электричества по глубине пористого электрода, весь электрод будет заряжаться равномерно. При таком режиме заряда отпадает необходимость в перезаряде аккумуляторов. Таким образом, теоретически можно полностью исключить газовыделение при заряде аккумуляторов. Это позволит устранить одну из причин возникновения теплового разгона, а именно накопление водорода в электродах в процессе эксплуатации аккумуляторов. В случае распределения количества прошедшего электричества по глубине пористого электрода с максимумом в центре электрода, кадмий, образующий дендриты, также будет в основном осаждаться в центре пористого электрода. Это позволит исключить рост дендритов на поверхности электродов, и тем самым исключить вторую причину возникновения теплового разгона.

В десятом и одиннадцатом разделах выполнено сравнение полученных теоретических выводов с экспериментальными данными, полученными для физической модели дендрита. В качестве физической модели дендрита была взята тонкая стеклянная трубка с платиновой проволокой, заполненная раствором и поляризуемая с торца. Платиновая проволока моделирует растущий к противоэлектроду дендрит, а стеклянная трубка ? ячейку сепаратора через которую растет дендрит. Так как кадмий плохо растворяется в щелочном электролите, то для эксперимента был выбран близкий по свойствам цинкатный электролит. КОН плотности 1,20 г см-3 с добавлением моногидрата лития 20 г·л-1 и Na2SnO3 *H2O 0,2 г·л-1, с концентрацией цинка в нем 25 г·л-1. Это стандартный электролит цинкования, который дает плотный осадок до плотностей тока 20 мА·см-2. Для количественной оценки распределения среднего тока (количества прошедшего электричества) платиновую проволоку с осажденным на неё цинком медленно и равномерно погружали в раствор того же состава, что и раствор физической модели поры. С помощью потенциостата поддерживали постоянный положительный потенциал на платиновой проволоке (рабочем электроде), относительно цинкового электрода сравнения в том же растворе, в точке входа платиновой проволоки в раствор. При этом в ячейке протекает ток, пропорциональный линейной массе осадка в точке входа проволоки в раствор и самописец, подключенный к потенциостату, рисует распределения количества осевшего цинка по длине платиновой проволоки. Данный метод чрезвычайно чувствительный он позволяет уверенно фиксировать неоднородности осадка до 0,01 мм.


загрузка...