(Со)полимеризация и термические превращения металлосодержащих мономеров как путь создания металлополимеров и нанокомпозитов (29.06.2009)

Автор: Джардималиева Гульжиан Искаковна

Как известно, условия возникновения различных режимов (непосредственно химического превращения или Стефановского режима, в котором химической конверсии предшествует фазовый переход) зависят от соотношения температуры фазового перехода к температурам в волне горения. Детальное исследование механизма полимеризации показало, что этому процессу предшествует фазовый переход – плавление металломономера. При этом сочетание эндотермических и экзотермических процессов, возникающих вблизи фронта реакции приводит к брутто-экзотермическим эффектам, что в конечном итоге поддерживает фронтальный режим химического превращения. О высокой экзотермичности реакции полимеризации акриламидных комплексов свидетельствуют и термодинамические характеристики (табл. 8).

Таблица 8. Термодинамические характеристики реакции полимеризации CoAAm (р=0.1 МПа)

кДж/моль

0 292 0 292

100 294 40 290

200 297 62 285

298.15 294 51 279

300 294 50 279

О механизме фронтальной полимеризации металлосодержащих мономеров. В ходе фронтальной полимеризации методом масс-спектроскопии установлено частичное выделение N2О, NO, NO2 и паров Н2O. Важно, что элементный состав продуктов фронтальной полимеризации почти таков же, что и состав мономера. Это свидетельствует о незначительном вкладе газовыделения в cостав конечных продуктов. Радикальный характер полимеризации во фронтальном режиме исследуемых комплексов подтвержден специальными опытами с добавлением в систему ловушек радикалов (антрацен, гидрохинон), которые ингибировали процесс при 0.5% концентрации. Важно отметить, что некоординированный AAm, а также хлориды, бромиды, перхлораты переходных металлов в аналогичных условиях не полимеризуются.

Общий анализ картины наблюдаемых превращений во фронте для акриламидных комплексов нитратов металлов указывает на саморегулирующийся характер системы и позволяют сделать ряд предположений относительно механизма полимеризации. Внесение теплового возмущения (Тз > 393 К) приводит к распаду незначительного, но достаточного для инициирования, количества нитрогрупп с образованием свободнорадикальных частиц NO2. Появление NO2 в системе возможно также за счет частичного гидролиза нитратных комплексов водой, образующейся при дегидратации.

M(NO3)x(AAm)m(nH2O ? M(NO3)x(AAm)m + nH2O (17)

M(NO3)x(AAm)m + H2O ? M(OH)(NO3)x-1 + HNO3 (18)

4HNO3 ? 4NO2 + O2 + 2H2O (19)

Скорее всего, процесс выделения молекулы воды и формирования частиц NO2 носят согласованный характер (схема 1, a, б): NO2 занимает координационную вакансию в координационной сфере Со2+, образующуюся после удаления одной молекулы Н2О. Образование инициирующих частиц осуществляется в координационной сфере шестикоординированного металла, что существенно облегчает энергетические затраты, необходимые для раскрытия кратной связи одной из акриламидных групп (c). Рост цепи осуществляется через предварительное (-координирование двойной связи мономера (б, в) с атомом Со (одновременно этим достигается и 6-координированное состояние его). Серия таких последовательных превращений с вовлечением соседних структурно организованных молекул металлломономера приводит к формированию металлополимерной цепи (г).

Качественный фазовый анализ методом рентгеновской дифрактометрии с разрешением по времени в режиме полимеризационной волны показал (рис. 12), что до 323 К изменений дифракционной картины, характерной для исходного кристаллического мономера, не происходит. Выше этой температуры появляются слабые рефлексы, указывающие на зарождение новой фазы. Конечная рентгенограмма соответствует аморфному полимеру, вместе с тем на спектре имеется хорошо выраженный пик при 14.5 град., который согласуется с соответствующим пиком в мономере и указывает на некоторую кристалличность формирующегося продукта. Проведенные исследования указывают на стадийность термического превращения в анализируемой системе: исходный мономер вначале теряет одну молекулу воды с образованием фазы 1, отщепление второй молекулы воды приводит к формированию безводной фазы 2 и далее идет процесс полимеризации.

Схема 1

Рис. 12. Рентгенограммы образцов акриламидного комплекса нитрата Co(II): a – исходный мономер, б, в

– появление фазы 1, г – безводная фаза 2, д – смесь фазы 2 и полимерного продукта, е – полимерный продукт

Дегидратация мономера в специальных условиях при 343 К в течение 12 ч сопровождается потерей веса, соответствующей отщеплению 2-х молекул воды. Рентгенограмма этого образца аналогична той, полученной в ходе температурного рентгенофазового исследования.

Таким образом, представленные данные свидетельствуют о том, что полимеризация МСМ является уникальным методом синтеза металлополимеров, у которых каждое мономерное звено включает эквивалент металла. Несмотря на присутствие в молекуле МСМ специфического заместителя в виде металлогруппировки, находящейся в непосредственной близости с кратной связью, последняя сохраняет способность к раскрытию и участию в реакциях роста полимерной цепи.

Термические превращения металлосодержащих мономеров как полимер-опосредованный синтез металлополимерных нанокомпозитов

Нами разработан оригинальный подход, заключающийся в совмещении синтеза наноразмерных частиц металла и стабилизирующей их полимерной оболочки in situ и основанный на реакциях гомо- и сополимеризации МСМ в твердой фазе и последующем контролируемом термолизе формирующихся металлополимеров. Хотя синтез высокодисперсных металлов и (или) их оксидов при термическом разложении солей органических кислот в твердой фазе, в частности, формиатов, ацетатов, оксалатов достаточно широко используется в практике, вопросы, связанные с соотношением кинетических параметров твердофазного превращения такого типа соединений и уровнем дисперсности их продуктов, т.е. границы возможностей управления их дисперсностью, до настоящего времени являются актуальными. Проведенные ранее исследования термического разложения акрилатов некоторых металлов в режиме термического анализа на воздухе и в инертной атмосфере дают лишь качественную картину превращений, происходящих при их термолизе. Для понимания этих процессов необходимы комплексные кинетические исследования.

Кинетические закономерности термолиза металлосодержащих мономеров. Наиболее полную информацию о влиянии различных факторов как на кинетику, так и на дисперсность образующихся продуктов удается получить при изотермических исследованиях термического распада МСМ в самогенерируемой атмосфере. Термические превращения МСМ изучены для ряда непредельных карбоксилатов металлов - акрилатов меди(II) (CuAcr2, кобальта(II) (CoAcr2), никеля(II) (NiAcr2), полиядерного оксоакрилата Fe(III) (Fe3OAcr6), сокристаллизатов акрилатов металлов с атомным соотношением Fe:Co равным 1:0.8 (FeCoAcr) и 2:1 (Fe2CoAcr), Fe:Ni=2:1 (Fe2NiAcr), (мет)акрилатных и фумаратных производных Hf(IV), малеинатов Co(II) Co[ОOСCH=CHCOO](2H2O (CoMal) и Fe(III) Fe3O(OH)[ОOСCH=CHCOOН]6(3H2O, (Fe3OHMal6) а также для акриламидного комплекса нитрата Co(II) (CoAAm). Термолиз исследованных соединений сопровождается газовыделением и потерей массы образцов, что обусловлено дегидратацией и последующими термическими превращениями дегидратированных соединений. Эти процессы протекают последовательно в разных температурных областях. При температурах Tterm < 473 K происходит дегидратация мономерных кристаллогидратов. По данным DTA-, TG-, DTG-исследований дегидратация акрилатов протекает при Tterm = 353-487К (Fe3OAcr6), 413-453 (CoAcr2), 373-473 K (NiAcr2), малеинатов при 393-433 K (CoMal) и 373-433 K (Fe3OHMal6), для акриламидного комплекса CoAAm при 328-362 К. Повышение температуры дегидратированного мономера до Tterm = 473-573 К приводит к твердофазной полимеризации. В этой температурной области наряду с незначительной потерей массы образцом (<< 10 мас.%) наблюдается небольшое газовыделение. В случае акрилатов и малеинатов металлов основной вклад вносят CO2 и пары CH2=CHCOOH и HOOCCH=CHCOOH, соответственно, конденсирующиеся на стенках реактора при комнатной температуре. Это подтверждается данными ИК- и масс-спектроскопии. Характерные температурные области полимеризации Tpolym, согласно данным ТА, составляют (543 K (CoAcr2), ( 563 K (NiAcr2), (510 K (CuAcr2), (518 K (Fe3OAcr6), 488-518 K (CoMal), (518 K (Fe3OHMal6). В ходе полимеризации происходят изменения в ИК спектрах поглощения дегидратированного мономера, связанные с падением интенсивности полосы поглощения валентных мод связи С=С и сближением частот поглощения валентных мод связи С=О, приводящее к появлению одной уширенной полосы поглощения в области 1540-1560 см(1. При Tterm > 523 K (для акрилата Cu(II) Tterm > 453 K) термополимеризованные образцы подвергаются интенсивному газовыделению (основное газовыделение). Кинетические закономерности процесса термолиза в изотермическом режиме и в самогенерируемой атмосфере изучены для CuAcr2 (<Tterm> = 363–513 K), CoAcr2 (623–663 K), NiAcr2 (573–633 K), Fe3OAcr6 (473–643 K), FeСоAcr (613–633 K), Fe2СоAcr (613–633 K), Fe2NiAcr (603–643 K), CoMal (613–643 K), Fe3OHMal6 (573–643 K), CoAAm (463 – 553 К). Скорость газовыделения W = d(/dt монотонно падает с ростом степени превращения ( = (((, t /(((, f, где (((, t = ((, t – ((, 0, (((, f = ((, f – ((, 0, ((, f, ((, t и ((, 0 соответственно, конечное, текущее и начальное число молей выделившихся газообразных продуктов на 1 моль исходного образца при комнатной температуре. Кинетика газовыделения ((() в общем виде (до ( ( 0.95) удовлетворительно апроксимируется уравнением для двух параллельных реакций:

((() = (1f[1 – exp(– k1()] + (1 –(1f)[1 – exp(– k2()] (20)

где ( = t – t0 (t0 – время прогрева образца, (1f = ((()(k2t ( 0, k1t ( (, k1, k2 – эффективные константы скорости. Параметры k1, k2, (1f, и (((, f зависят от Tterm:

(1f, (((, f = Аexp[– Ea,eff/(RTterm)] (21)

keff = k0,effexp[– Ea,eff/(RTterm)] (22)

где А, k0,eff предэкспоненциальный множитель, Ea,eff –эффективная энергия активации.

Начальная скорость газовыделения W(((= W0 равна

W0 = (1fk1 + (1 –(1f)k2 (23)

Уравнениями (20) и (23) описывается кинетика газовыделения NiAcr2, FeСоAcr, Fe2СоAcr, Fe2NiAcr и Fe3OHMal6. При k2 ( 0, (1f ( 1

((() ( 1 – exp(– k1() (24)

W0 ( k1 (25)

Уравнения (24) и (25) описывают кинетику газовыделения при термических превращениях акрилата CoAcr2 и CoMal (рис. 13). В соответствии с W0 (табл. 8), исследованные акрилаты металлов можно расположить в ряд по уменьшению реакционной способности к газовыделению: Сu ( Fe ( Co ( Ni.

Состав газообразных и твердофазных продуктов термолиза МСМ. Основным газообразным продуктом превращения исследованных акрилатов и малеинатов металлов, их сокристаллизатов является CО2. Это подтверждается ИК-спектроскопическими и масс-спектрометрическими наблюдениями. В значительно меньшем количестве выделяются СО, Н2, а также конденсирующиеся при Troom пары Н2О и CH2=CHCOOН, НОСОCH=CHCOOН – продукты пиролиза соответствующих комплексов. Наряду с перечисленными газообразными продуктами обнаружен CН4 в случае CoAcr2 (следы) и NiAcr2 (соизмеримые с CО2 количества). В продуктах превращения CuAcr2 в измеримых количествах образуется C2Н4.

Рис. 13. Кинетика газовыделения ((t) (а) и полулогарифмическая анаморфоза [lg(1-(), t] (б) для процесса термолиза малеината Co(II) (CoMal) в самогенерируемой атмосфере. 1 – 653 К, 2 – 643 К, 3 – 633 К, 4 – 623 К, 5 – 613 К.

Состав твердофазных продуктов. Количественные наблюдения за эволюцией в ходе превращения ИК-спектров поглощения твердых продуктов термолиза исследованных карбоксилатов позволяют говорить о декарбоксилировании металлсодержащих фрагментов и появлении сопряженных С=С-связей. Электронно-микроскопические исследования конечных продуктов термолиза МСМ показали, что для них характерна морфологически близкая картина: наблюдаются электронно-плотные частицы, распределенные в менее электронно-плотной матрице. Частицы имеют форму близкую к сферической, обладают узким распределением по размерам и присутствуют как индивидуально, так и в виде агрегатов из 3 – 10 частиц (рис. 14). Наноразмерные частицы располагаются в матрице достаточно однородно со средним расстоянием центров частиц друг от друга 8–10 нм.

Рис. 14. Электронно-микроскопические снимки продуктов термолиза акрилата Co(II) (а) и Fe2СоAcr (б)при 643 К.

В случае CoMal наряду с наноразмерными сферическими частицами одновременно наблюдаются относительно крупные агрегаты в виде кристаллов кубической формы с размерами 10 – 20 нм. Важно еще отметить, что средний размер частиц, формирующихся в ходе термических превращений непредельных карбоксилатов металлов ниже наблюдаемого для продуктов термопревращений предельных карбоксилатов металлов (рис. 15).

Кинетические схемы и реакции термических превращений металлосодержащих мономеров. Термические превращения металлосодержащих мономеров, как показано выше, связаны со следующими тремя последовательными макростадиями: (1) дегидратация кристаллогидратов мономеров (Tterm < 423 K) с одновременной перестройкой лигандного окружения, сопровождающегося выделением части карбоксилатных лигандов (акриловой и малеиновой кислот, соответственно); (2) твердофазная полимеризация перестроившегося дегидратированного мономера (Tterm ( 453 – 493 K); (3) декарбоксилирование образовавшегося (со)полимера при высоких температурах (Tterm > 473 K).


загрузка...