Деградация пиридина и его производных представителями родов Arthrobacter и Rhodococcus (27.09.2010)

Автор: Хасаева Фатимат Машировна

Рис. 21. Масс-спектр ЭИ N-формил-2-ме-тилпиррола

Ещё одним косвенным доказательством в пользу структуры N-формил-2-метилпиррола было его tуд=6,57 мин, близкое к tуд=6,52 мин для N-ацетилпиррола. Можно предположить, что образование N-формил-2-метилпиррола при биодеградации 2-метилпиридина осуществляется по механизму, аналогичному для образования N-ацетилпиррола, но с энзиматическим раскрытием пиридинового кольца между 5 и 6 атомами углерода и последующей конденсацией по атомам N и C (рис. 22).

Рис. 22. Предполагаемый путь образования N-формил-2-метилпиррола

При дальнейшем анализе кислых экстрактов КЖ (рис. 18, пики 10,11,14-16) был обнаружен ряд изомеров с м.м. 125 Да и следы соединения с м.м. 141 (пик 12). В спектрах соединений с м.м. 125 Да присутствовали пики фрагментных ионов, свидетельствующие о наличии в их составе фенольных гидроксилов. Это позволило предположить, что данные соединения являются изомерами дигидрокси-2-МП. Установление положения гидроксильных групп без наличия стандартных образцов невозможно. Количество двух изомеров с м.м. 125Да в смеси было велико, они обнаруживались во всех кислотных экстрактах (3-22 ч) тогда как количество остальных трех изомеров было мало, они определялись только в 12, 15 и 18 часовых экстрактах. Нельзя исключить, что эти соединения являются гидроксилсодержащими пирролами, которые с потерей молекулы воды превращаются в соответствующие зарегистри-рованные пиррольные структуры (рис. 20 и 22).Анализ масс-спектра соединения 13 (рис. 18) с tуд=7,93 мин (м.м.141 Да), следы которого были обнаружены в 12 и 15 часовых экстрактах КЖ, позволил предположительно идентифицировать его как тригидрокси-2-МП (рис. 23)

Рис. 23. Масс-спектр ЭИ три-гидрокси-2-МП

Для подтверждения предполагаемых структур и обнаружения других интермедиатов, содержащих ОН-группы, было проведено их силилирование в дихлорметановых экстрактах КЖ. Триметилсилильные производные изучаемых соединений имели характерные пики в масс-спектрах, что облегчает их идентификацию. Этот подход позволил детектировать соединение, с m/z 181 и tуд=10,12 мин (рис. 24). Масс-спектр этого вещества был найден в базе данных и соответствовал триметилсилильному производному гидрокси-2-МП. Однако масс-спектральный распад не позволяет однозначно отнести обнаруженное соединение к 3-гидрокси-2-метил- или 5-гидрокси-2-метилпиридину.

Рис. 24. Масс-спектр ЭИ

силильного

произвоного

гидрокси-2-ме-тилпирдина

Если в КЖ в качестве интермедиата присутствует изомер 3-гидрокси-2-МП, то вещество с м.м. 127 и tуд=10.60 мин, обнаруживаемое в экстрактах КЖ разного времени культивирования может быть продуктом присоединения воды к 3-гидрокси-2-МП и представлять собой 3,6-дигидрокси-3,4-дигидро-2-метилпиридин (рис.25).

Рис. 25. Масс-спектр ЭИ 3,6-дигидрокси-3,4-дигидро-2-МП.

Хотя нами не был однозначно де-тектирован 5-гидрок-си-2-МП в качестве интермедиата, однако обнаружение как 4-оксопентановой кис-лоты, так и N-формил-2-метилиррола подтверждает образование этого соединения при деградации 2-МП.

Как следует из вышеизложенного, нами были идентифицированы, в основном, соединения промежуточных стадий трансформации первичных гидрокси-2-МП: N-ацетилпиррол; N-формил-2-метилпиррол; 4-оксопентановая кислота; 3,6-дигидрокси-3,4-дигидро-2-МП;изомерные дигидрокси-2-МП и тригидрокси-2-МП. При этом основная масса дигидрокси-2-МП подвергается дальнейшему гидроксилированию с образованием тригидрокси-2-МП, который в свою очередь служит субстратом для образования пигмента азахиноновой структуры.

Предполагаемые пути катаболизма 2-МП штаммом Arthrobacter sp. КМ-2MP. Суммируя полученные данные о структуре образующихся интермедиатов (рис. 26), можно сделать вывод, что штамм осуществляет катаболизм 2-МП в результате реализации несколько необходимых и обязательных реакций.

1. Катаболизм 2-МП штаммом Arthrobacter sp. КМ-2MP начинается с гидроксилирования пиридинового кольца в 3 или 5 положениях, с образованием гидрокси-2-МП.

2. В результате раскрытия кольца 3-гидрокси-2-МП (рис. 26, II) по связи С2-С3, с образованием N-ацетилпиррола (рис. 26, IX). Раскрытие кольца 5-гидрокси-2-МП между С-5 и С-6, аналогично, приводит к образованию N-формил-2-метилпиррола (рис. 26, VIII), которые в дальнейшем подвергаются как окислению, так и восстановлению. Такой путь показан впервые.

3. Гидрокси-2-МП (рис.26, II и III) окисляются в дигидрокси-2-МП (рис.26, IV и V). При раскрытии цикла на этом этапе, образуется 4-оксопентановая кислота (рис.26, X). Тригидрокси-2-МП (рис.26, VI), образующийся при дальнейшем окислении дигидроксипроизводного, в свою очередь быстро конденсируется с образованием пигмента азахиноновой природы (рис. 26, VII).

Рис. 26. Катаболизм 2-метилпиридина (I) штаммом Аrthrobacter sp. КМ-2МР.

II – 3-гидрокси-2-метилпиридин; III – 5-гидрикси-2-метилпиридин; IV – 3,6-дигидрок-си-2-метилпиридин; V – 5,6-дигидрокси-2-метилпиридин; VI – 3,5,6-тригидрокси-2-метилпиридин; VII – пигмент азахиноновой природы; VIII – N-формил-2-метилпиррол; IX – N-ацетилпиррол; X – 4-оксопентановая кислота.

5.4. Анализ и идентификация продуктов деградации 4-МП штаммом Аrthrobacter sp. КМ-4MP. Хроматографирование (TCХ) щелочного экстракта КЖ показал появление в ней вещества с Rf = 0,38 (система 2). Соединение было выделено в индивидуальном состоянии. При обработке раствором FeCl2 оно окрашивалось в желтый цвет, что говорило о возможном присутствии ОН-группы в положении 2- или 4-пиридинового кольца [Watson et al., 1974].

При подщелачивании этанольного раствора выделенного вещества, максимум поглощения (? max = 295 нм) не сдвигался в длинноволновую область спектра, что также свойственно для 2- и 4-гидроксипиридина [Klinsberg, 1962].

Характерную для 2-гидроксипиридина полосу поглощения в области 1660 см -1 наблюдали в ИК-спектре [Schofield, 1967]. В масс-спектре анализируемого соединения наблюдался интенсивный пик молекулярного иона, последующая фрагментация которого приводила к образованию фрагментов 109(100)М+?, 81(10)(М–СО)+, 80(54)(М–НСО)+, и 53(17)(М–НСО–НСN)+, характерных для гидроксипирдинов.

В спектре – ЯМР образца этого вещества, снятого в СDС13 (стандарт ТМС - внутренний) наблюдался дублет протона в 6-ом положении пиридинового кольца с химическим сдвигом 6,37 м.д. (J5,6 = 6,6Гц), уширенный синглет протона Н-3 с химическим сдвигом 6,37 м.д., дублет дублетов протона Н-5 с химическим сдвигом 6,12 м.д. (J3,5 = 1,7 Гц, J5,6 = 6,6Гц) и синглет трех протонов метильной группы с химическим сдвигом 2,23 м.д. На основании совокупности спектральных данных структура выделенного интермедиата была определена как 2-гидрокси-4-МП (рис.27, II).

Пигментирование КЖ при росте штамма на 4-МП отличалась от такового при росте на 2-МП и 2,6-ДМП. Анализ (ТСХ) КЖ с нейтральной рН выявил наличие голубого и розового (Rf = 0,69; Rf = 0,8 в системе 2) пигментов, которые препаративно были выделены. Количество розового пигмента оказалось недостаточным для его идентификации. По данным масс-спектров химической ионизации (m/z): 259(100)(МН)+, 242(15)(МН–ОН)+?, 224(4)(МН–ОН–Н2О)+?, 215(5)(МН–ОН–HCN)+?, 168(72)(МН–ОН–Н2О)+?, голубой пигмент, возможно, имел структуру замещенного диазафлуорена, который мог образоваться из соответствующего диазахинона в результате ферментативной дегидратации (рис. 26, VI).

Химическая литература конца ХХ века содержит сведения об образовании пигментов интенсивно голубой и слабо-голубой окраски при окислении соединений пиридиновой природы, к которым применили групповое название “азахиноны” [Ensign et al., 1963]. Образование голубых пигментов наблюдали в процессе метаболизма никотиновой кислоты микроорганизмами рода Bacillus [Ensign et al., 1965], никотина [Holmes et al., 1975], 2-гидроксипиридина штаммом A. crystallopoietes [Ensign et al., 1963], тремя видами Arhtrobacter [Kolenbrander, 1977]. Для штамма A. crystallopoietes, который утилизирует 2-гидроксипиридин, характерно образование голубого пигмента диазадифенохиноновой природы [Knackmuss, 1962; Gupta, 1975]. Известно, что он образуется при автоокислении 2,3,6-тригидроксипиридина. По видимому, это соединение является одновременно интермедиатом пути деградации пиридинового кольца и предшественником пигмента [Ensign et al., 1965]. На основании этих данных мы предположили, что розовый и голубой пигменты, образуемые выделенным нами штаммом Arthrobacter sp. КМ-4MP, являются продуктами конденсации 2,3-дигидрокси-4-МП и 2,3,6-тригидрокси-4-МП соответственно (рис. 26, VI).

Хроматограммы кислых экстрактов КЖ были обработаны спиртовым раствором бомкрезолового зеленого. Наблюдали проявление желтых пятен на синем фоне, что свидетельствовало о наличие карбоновых кислот специфического строения. Действительно, на хроматограмме было обнаружено соединение, Rf которого (Rf = 0,15, система 3) был идентичен Rf метилмалеиновой (цитраконовой) кислоты (Rf = 0,17). Клетки Arthrobacter sp. KM-4МР потребляли цитраконовую кислоту в качестве единственного источника углерода без лаг-фазы.

Известно, что при раскрытии кольца 2,3,6-тригидроксипиридина образуется полуамид малеиновой кислоты, малеиновая и фумаровая кислоты [Коростелева и др., 1981]. Можно предположить, что раскрытие 2,3,6-тригидрокси-4-МП аналогичным образом приведет к образованию полуамида метилмалеиновой и метилмалеиновой кислот. Присутствие в среде полуамида метилмалеиновой кислоты доказать не удалось. Участие в процессе метилмалеиновой кислоты было зафиксировано как прямыми, так и косвенными методами (рис. 26, V).

Рис. 27. Катаболизм 4-метилпиридина (I) штаммом Аrthrobacter sp. KM-4МР.

II – 2-гидрокси-4-метилпиридин; III – 3-гидрокси-4-МП,

IV – 4-(N-ацетиламино)-2-оксо-пентен-3-овая кислота;

V – метилмалеиновая кислота; VI – пигмент диазафлуореновой природы.

Следовательно, катаболизм 4-МП штаммом Arthrobacter sp. KM-4МР протекает так, как показано на рисунке.

5.5. Анализ и идентификация продуктов деградации 2,6-ДМП штаммом Аrthrobacter sp. КМ-2.6DMP. При хроматографическом анализе щелочных экстрактов параллельно со снижением количества субстрата (Rf = 0,8, система 1), наблюдали появление вещества 2 (табл. 9, II), хроматографическая подвижность которого на силикагеле (Rf = 0,43) соответствовала хроматографической подвижности (Rf = 0,42) 3-гидрокси-2,6-ДМП. Для соединения 2 было характерно пурпурное окрашивание раствором FeCl2, что указывало на возможность присутствия ОН-группы в кольце пиридина. При анализе нейтральных экстрактов была получена аналогичная картина, то есть появление вещества 2 с Rf 3-гидрокси-2,6-ДМП. Используя тонкослойную препаративную хроматографию, соединение 2 было выделено в виде белых кристаллов, температура плавления которых (Тпл 200-210?С) была идентична Тпл синтетического свидетеля. При подщелачивании метанольного раствора выделенного соединения 2 до рН 8,0 максимум поглощения сдвигался в длинноволновую область спектра (при рН 7,0 – 288 нм, при рН 8,0 – 311 нм) на 23 нм, что характерно для 3-гидроксипиридина. Результаты масс-спектрального анализа выделенного образца и синтетического свидетеля, представленные в таблице 9, подтвердили их идентичность. В спектре, помимо молекулярного иона наблюдались характерные для метилпиридинов (М-Н)+ ионы, а также ионы (М-СО)+ и (М-СНО)+, что доказывало наличие в структуре ароматической гидроксигруппы, присутствие которой подтверждала также полоса поглощения 3510 см-1. Отметим, что в начальной фазе роста соединение 2 присутствовало в следовых количествах, максимально накапливалось к 15 ч и изчезало к 24 ч культивирования. Растущие клетки использовали 3-гидрокси-2,6-ДМП в качестве ростового субстрата (табл. 9, II).

Таблица 9. Масс-спектры соединений, интермедиатов распада 2,6-диметил-пиридина (Аrthrobacter sp. КМ-4)

Соединения Масс-спектры

m/z, (I %) ИК- спектры

? см -1 УФ – спектры

?max, нм

3-гидрокси-2,6-ДМП


загрузка...