Постановка и решение задач механики при создании электромагнитной системы токамака (27.09.2010)

Автор: Алексеев Александр Борисович

Четвертая глава диссертации посвящена исследованию влияния изготовления и сборки на механическое состояние и ресурс силовых конструкций ЭМС токамака.

В первом разделе анализируется влияние отклонений от номинальных размеров и положения элементов системы КТП на НДС силовых конструкций с помощью КЭ моделирования. Особенно важно оценить влияние таких отклонений на механическое состояние межкатушечных соединений: арочного распора, зоны полоидальных штифтов и фланцев межблочных конструкций для обоснованного задания допусков на изготовления и сборку. Суть предлагаемой методики состоит в том, что все неточности изготовления и сборки сводятся к появлению отклонений от номинальных величин зазоров в стыках между катушками. Между контактирующими поверхностями на стыках вводятся соответствующие контактные элементы с заданными зазорами. По сравнению с прямым моделированием геометрических отклонений этот подход имеет следующие преимущества:

не нужно изменять геометрию КЭ модели, что является трудоемким и трудно автоматизируемым процессом;

легко моделировать произвольные конфигурации зазоров вдоль контакти-рующих поверхностей, автоматически распределяя нужные величины зазоров посредством задания соответствующих реальных констант (величин зазоров) в контактных элементах типа «узел в узел» (CONTACT 52);

массив зазоров может быть сформирован отдельно, с помощью какой-либо программы, линейно, или любым другим образом, интерполируя величины зазоров от одной границы зоны контакта до другой, а затем перенесен в КЭ модель.

В разделе дано описание используемых КЭ моделей и результаты расчета для заданных отклонений зазоров от номинальных значений ЭМС ИТЭР.

Во втором разделе главы рассматривается хотя и частная, но весьма важная задача определения влияния остаточных напряжений на ресурс КПП. Получены аналитические выражения для остаточных напряжений в кожухе проводника при гибке на заданный радиус. Представлены результаты расчета остаточных напряжений и их влияние на допускаемые циклические напряжения в кожухе проводника КПП установки ИТЭР для требуемого ресурса. Показано значительное снижение циклической прочности из-за остаточных растягивающих напряжений. Однако остаточные напряжения могут играть и положительную роль, как представлено в третьем разделе четвертой главы. Здесь описывается способ изготовления бескаркасного равнопрочного сверхпроводящего соленоида. Предлагается путем пластического деформи-рования внутренних витков соленоида получить после разгрузки сжимающие остаточные напряжения и деформации растяжения, такие, что при нагружении пондеромоторными силами происходит выравнивание действующих напря-жений, снижение максимального значения растягивающего напряжения, увеличение ресурса и токонесущей способности. Эффективность предлагаемого способа подтверждается приведенными расчетами на примере ЦС ИТЭР.

Пятая глава посвящена разработке и обоснованию основных положений Норм расчета на прочность электромагнитной системы ИТЭР. Нормы расчета на прочность ЭМС ИТЭР (далее – Нормы) разрабатывались в течение длительного времени с привлечением специалистов из различных стран, участвующих в проекте ИТЭР. Текущий принятый вариант Норм был написан автором совместно с сотрудниками организации ИТЭР (Н. Митчеллом и К. Йонгом) в 2008 – 2009 г. В данной главе диссертации представлены основные, наиболее важные и отличающиеся от других норм, положения, в разработке которых автор принимал непосредственное участие.

Особенности конструкции и условий работы ЭМС, обуславливающие необходимость разработки специальных норм, обсуждаются в первом разделе. Наиболее важные, с точки зрения механического поведения материалов и оценки прочности, особенности конструкции и условий работы электромагнитной системы ИТЭР приведены ниже.

ЭМС ИТЭР работает при криогенной температуре (около 4,2 К). Механическое поведение конструкционных сталей при этой температуре существенно отличается от поведения сталей при комнатной или повышенной температуре. Существенно возрастают пределы текучести и прочности. Пластическое течение становится плохо предсказуемым. Оно имеет скачкообразный характер, зависящий от условий нагружения, скорости деформирования, условий охлаждения и др. Пластические свойства сталей падают. Уменьшается вязкость разрушения. Повышается вероятность хрупкого разрушения, как статического, так и усталостного.

Основные механические нагрузки создаются электромагнитными силами. Давление и весовые нагрузки, которые являются определяющими для элементов атомных реакторов (сосудов под давлением и трубопроводов), пренебрежимо малы, по сравнению с электромагнитными силами.

Электромагнитное взаимодействие элементов ЭМС, кроме механического нагружения, может привести к магнитоупругой потере устойчивости.

Сверхпроводящие обмотки ЭМС имеют сложную анизотропную структуру. При этом изоляционные материалы, наряду с металлическими элементами, выполняют несущую (конструкционную) функцию.

Требования по электрической прочности могут определять критерии механической прочности для изоляционных материалов.

Визуальная инспекция состояния ЭМС в процессе эксплуатации невозможна. Концепция «течь перед разрушением» также неприменима к силовым элементам электромагнитной системы.

Сборка и затяжка болтовых соединений осуществляется при комнатной температуре, а механические нагрузки прикладываются при криогенной температуре. При этом предел текучести материала болта существенно возрастает, локальная текучесть материала в резьбе не ограничивает максимальные циклические напряжения, в отличие от напряженного состояния в болтах, работающих при комнатной или повышенной температуре.

Существующие нормы расчета на прочность, например оборудования атомных электростанций, не учитывают в полной мере эти особенности.

Во втором разделе дан перечень предельных состояний (видов разрушений), принятых к рассмотрению в Нормах. Для металлических элементов – это пластический коллапс (статическое разрушение), кратковре-менное хрупкое разрушение (статическое разрушение), усталостное разрушение (рост усталостной трещины или малоцикловая усталость). Для неметаллических компонентов рассматриваются статическое и усталостное разрушение при сжатии и растяжении, статическое и усталостное расслоение при сдвиге, а также статическое и усталостное разрушение склейки при растяжении.

Описанию критериев статической прочности металлических элементов посвящен третий раздел. Здесь на основе рассмотрения аномального поведения конструкционных сталей при пластической деформации в условиях температуры, близкой к абсолютному нулю, предлагаются более жесткие, чем в других нормах, ограничения на напряжения в металлических элементах ЭМС. Эти ограничения призваны не допустить как пластическое, так и хрупкое разрушение. В качестве исходных величин приняты предел текучести и вязкость разрушения материала при рабочей температуре. В четвертом разделе дано описание критериев циклической прочности для металлических элементов. В Нормах допускается использовать как оценку ресурса на основе расчета роста усталостной трещины, так и проводить расчет с использованием кривых усталостной прочности. Метод с использованием усталостных кривых хорошо известен и широко используется (в том или ином виде) в обычных нормах. В Нормах расчета на прочность ЭМС ИТЭР этот метод рекомендуется для стандартных элементов (например, болты и шпильки), а также локальных зон концентрации напряжений. Т.е., в тех случаях, когда возможно провести детальное исследование элемента конструкции методами неразрушающего контроля на предмет отсутствия дефектов, регламентируемых стандартами машиностроения и атомной техники. Особенности применения этого метода к анализу циклической прочности болтовых соединений ЭМС ИТЭР рассмотрены в шестом разделе данной главы.

Метод, основанный на расчете роста усталостной трещины, в Нормах применяется для оценки усталостной прочности основных конструкционных элементов, таких как корпуса КТП, межблочные конструкции и др., а также силовых кожухов сверхпроводящих кабелей. Это связано с технической сложностью и высокой стоимостью детальной дефектоскопии конструкционных элементов ЭМС ИТЭР, для которых характерны сложная пространственная геометрия, большие толщины и большая протяженность. Так, например, толщина стенок корпуса КТП достигает 200 мм, длина проводника КТП составляет 82,2 км, КПП – 61,4 км. В этом случае исходят из того, что конструкций, свободных от дефектов, вообще говоря, не существует. В качестве начального дефекта в Нормах принимается эллиптическая (внедренная) или полуэллиптическая (поверхностная) трещина, ориентированная наиболее опасным образом, т.е. лежащая в плоскости, перпендикулярной к направлению действия наибольших циклических растягивающих напряжений.

Для расчета роста усталостной трещины в Нормах рекомендуется использовать уравнение Пэриса:

где (KI – размах коэффициента интенсивности напряжений; С и m – константы материала; а – размер трещины; N – число циклов. В качестве предельного состояния принято прорастание трещины сквозь толщину элемен-та или достижение максимального значения коэффициента интенсивности напряжений предельно допускаемой величины.

В пятом разделе представлены рекомендации по учету среднего напряжения в цикле при расчете роста усталостной трещины. Даны практические соотношения, полученные на основе уравнения Уолкера, для конструкционных материалов ЭМС ИТЭР. Особенности оценки циклической прочности болтов ЭМС ИТЭР рассмотрены в шестом разделе. Болты затягиваются при комнатной температуре, а циклически нагружаются при 4 К. Благодаря низкотемпе-ратурному упрочнению материала болта циклические напряжения в резьбе не ограничиваются пределом текучести. Показано, что в этом случае метод среднего номинального напряжения, который широко используется для анализа циклической прочности элементов конструкций с концентраторами напряжений, работающих при комнатной и повышенных температурах, может дать неправильную, неконсервативную оценку. В разделе даны рекомендации по применению метода остаточных напряжений с учетом специфики циклического нагружения болтовых соединений ЭМС.

Критерии прочности для электрической изоляции (высоко- и низковольтной), а также для конструкционных силовых элементов из неметаллических материалов изложены в седьмом разделе. При назначении критериев механической прочности изоляции учитывается, как её конструкционная роль, так и диэлектрическая функция.

В восьмом разделе обсуждаются особенности оценки устойчивости элементов ЭМС токамака. В дополнение к классической потере устойчивости сжатых элементов в Нормах рассматривается возможность потери соосности системы катушек полоидального магнитного поля и центрального соленоида. Указывается на необходимость учета магнитных жесткостей при анализе устойчивости токонесущих элементов ЭМС. Задается требуемый минимальный коэффициент запаса устойчивости, равный 5. Этот коэффициент больше чем в обычных нормах, что объясняется особенностями условий работы ЭМС.

Таким образом, впервые были разработаны нормы расчета на прочность сверхпроводящей электромагнитной системы экспериментального термоядер-ного реактора. Нормы основаны на действующих нормативных документах, имеющемся опыте создания и эксплуатации криогенного оборудования и магнитных систем, а также на существующих экспериментальных данных. Нормы учитывают специфические характеристики и условия работы сверхпроводящей электромагнитной системы экспериментального токамака-реактора. Нормы использовались при проектировании и расчетах ЭМС ИТЭР. Опыт реальной эксплуатации установки ИТЭР внесет ценный вклад в дальнейшую разработку и усовершенствование норм и стандартов, необходимых для промышленного освоения термоядерной энергии.

В заключении кратко подводятся итоги выполненной работы.

Поставлен и решен комплекс задач механики, возникающих при создании электромагнитных систем токамаков. Обобщены и систематизированно представлены результаты многолетнего исследования напряженно-деформированного состояния, оценки прочности и устойчивости ЭМС токамаков различных конструкций, включая макеты и модельные катушки. В выполненной работе анализируются и решаются основные проблемы механики электромагнитной системы токамака, начиная с подходов к определению напряженно-деформированного состояния и заканчивая разработкой специальных норм прочности. Разработанные математические модели, расчетные методики и полученные аналитические решения применимы для анализа напряженно-деформированного состояния, магнитоупругой устойчивости, термомеханического состояния и оценки прочности электромагнитных систем токамаков и других электрофизических установок.

Представленные в диссертации результаты имеют большое научное и прикладное значение для разработки и создания установок с магнитным удержанием плазмы типа токамак для исследований в области управляемого термоядерного синтеза.

Большое значение имеют результаты, относящиеся к созданию ЭМС проекта ИТЭР – первого экспериментального термоядерного реактора. Установка ИТЭР должна вступить в строй в ноябре 2019 г. В итоге выполненных исследований и проведенных расчетов была обоснована прочность ЭМС ИТЭР, что является основой для её будущей безопасной эксплуатации.

Список публикаций по теме диссертации

Алексеев А.Б., Малков А.А., Спирченко Ю.В. Механика магнитных систем токамаков // Сб. «Вопросы атомной науки и техники». Серия «Электрофизическая аппаратура». Вып. 5(31), 2010. С. 203-212.

Аlekseev А., Mitchell N., Gallix R. et al. Magnet Safety Assessment for ITER // Journal of Fusion Energy. Vol. 16, N 1-2, 1997. P. 25-35.

Alekseev A., Egorov K., Malkov A. and Panin A. Structural Analysis of the GLOBUS-M Tokamak Magnet System // Plasma Devices and Operations. Vol. 9, 2001. P. 57-81.

Alekseev A.B., Sorin V.M. Analysis of Magneto-mechanical Stability of ITER Magnet // Plasma Devices and Operations. Vol. 5, 1998. P. 335-344.

Аlekseev А., Arneman A., Belov A. et al. On the Calculation of Concentrated Loads at Finite-Element Mesh Nodes as Equivalents of a Given Spatial Distribution of Volume Force Density // Plasma Devices and Operations. Vol. 10 (4), 2002. P. 269-284.

Аlekseev А., Korotkov V., Gorkusha D. et al. Adiabatical Spherical Tokamak (TSP-AST) Magnets // IEEE Transactions on Applied Superconductivity. Vol. 12, N 1, 2002. P. 579-581.

Аlekseev А., Sborchia C., Duglue D. et al. Design and Manufacture of the Poloidal Field Conductor Insert Coil // Fusion Engineering and Design. Vol. 66-68, 2003. P. 1081-1086.

Алексеев А.Б., Малаховский И.В., Малков А.А., Спирченко Ю.В. Центральный соленоид ИТЭР. Прочность опорных структур и системы предварительного поджатия // Сб. «Вопросы атомной науки и техники». Серия «Электрофизическая аппаратура». Вып. 4 (30), 2006. С. 11-20.

Alekseev A. Electromagnetic Loads and Magnetoelastic Stability of the In-vessel Poloidal Field Coils of the T15 Upgrade // Plasma Devices and Operations. Vol. 17 (3), 2009. P. 201-206.


загрузка...