Научные основы управления параметрами структур корпоративных сетей (27.07.2009)

Автор: Леохин Юрий Львович

среда визуализации – представляет собой графический интерфейс пользователя.

Разработан алгоритм функционирования системы, который можно разделить на четыре этапа: инициализация; сбор статистики; формирование нейронной сети; контроль над корпоративной сетью.

Первый этап – инициализационный, выполняется за три основных шага:

начальная инициализация – на этом шаге подсистема управления и прогнозирования настраивает все элементы системы;

поиск объектов корпоративной сети – начальный поиск и формирование списка объектов корпоративной сети; на этом этапе запускается подсистема поиска объектов сети;

формирование базы данных - формирование базы данных статистической информации на основе списка объектов сети.

Второй этап заключается в сборе статистической информации, необходимой для обучения нейронной сети. Этап выполняется за один шаг, во время работы которого запускается подсистема сбора статистики, в результате чего пополняется база данных.

Третий этап - формирование и обучение нейронной сети на основе списка объектов сети и накопленной в базе данных статистической информации. Этап реализуется за один шаг.

Большинство администраторов для прогнозирования используют небольшое количество интегральных параметров – объем трафика, задержки в узлах коммутации, количество потерянных пакетов, что не позволяет получить качественный прогноз и подходит в основном для крупных магистралей сетей. Для повышения качества прогноза предлагается использовать значения параметров MIB устройств. В корпоративной сети это возможно, так как все ресурсы принадлежат предприятию и доступ к устройствам и сетевым узлам у администраторов не ограничен.

Рис. 2. Архитектура системы управления

Далее в главе описана разработанная подсистема прогнозирования состояния корпоративной сети и приведены результаты экспериментального исследования узла RUNNet. По результатам технического анализа из параметров MIB были выбраны 32 переменных: 25 входных и 7 выходных. Выбор определялся тем, что именно эти переменные варьируются динамически в течение суток. Измерения проводились каждый час в течение нескольких месяцев. В качестве метода прогнозирования был обоснованно выбран нейросетевой метод. Для исследований возможностей разработанной подсистемы прогнозирования NeuroNet были проведены различные эксперименты, основная цель которых - подобрать значения параметров настройки нейросетевого комплекса, при которых итоговые результаты ее работы содержали наименьшее количество ошибок в прогнозе. Эксперименты проводились на данных, полученных от системных администраторов корпоративной сети RUNNnet. При построении прогноза статистика была получена для узла сети RUNNet, структура которого представлена на рисунке 3, в течение 2 месяцев, включая критические, с периодом в 1час.

Для оценки насколько эффективности подсистемы прогнозирования, в качестве эксперимента ставились опыты по прогнозированию трафика сети по интегральным параметрам, и проводилось сравнение итогов с теми, которые получились в результате опытов прогнозирования по параметрам MIB устройств.

Экспериментальные данные по трафику предоставлялись администраторами сети RUNNnet. Оценивая различные параметры можно было увидеть, что анализ трафика в среднем дает около 80% правильных предсказаний, в то время как анализ параметров базы данных MIB – 82-98%. На рисунке 4 представлен пример результатов прогноза.

Рис. 3. Структура узла связи корпоративной сети RunNet

Рис. 4. Реальное и прогнозируемое изменения параметра IcmpInErrors с прогнозом изменения параметра на 1 день (точность прогноза составляет: 95%).

Проведен расчет характеристик структуры корпоративной сети NanoNet, позволивший спрогнозировать и определить нагрузку на каналы связи и опорные узлы при заданных параметрах телекоммуникационного оборудования с учетом интенсивности работы участников национальной нанотехнологической сети.

Для отладки программного обеспечения систем управления и выбора и настройки алгоритмов обслуживания очередей в узлах коммутации и маршрутизации с учетом временных параметров трафика разработана архитектура аппаратно-программной системы комплексной динамической отладки и испытания (рисунок 5). Данная система позволяет регистрировать и вычислять следующие параметры: время поступления пакета в узел, время трансляции пакета узлом в сеть, время задержки пакета в узле, изменение задержки, количество потерянных пакетов, изменение длин очередей и их текущих значений.

В состав системы входят: компьютер разработчика, имитатор сетевого узла, ловушка событий, синхронизатор процессов имитации, программное обеспечение средств отладки и испытания.

В основу реализации архитектуры системы отладки и испытания положен принцип, использующий стартстопный режим и дополнительные аппаратно-программные средства моделирования сетевого узла, управляемые компьютером разработчика, в среде операционной системы которого функционирует отлаживаемое ПО (ОПО) системы управления корпоративной сетью. Основная особенность системы отладки и испытания заключается в том, что в реальном масштабе времени работает только ОПО, а при решении вспомогательных задач (подготовка данных для имитации, моделирование, обработка результатов и т.д.) происходит останов "реального" времени. Останов "реального" времени осуществляется по событиям, к которым относятся: "запрос на обслуживание очереди", "выдача управляющего воздействия" и "чтение состояния очереди". Ловушка событий идентифицирует каждое событие и информирует о нем программу синхронизации процессов имитации, которая останавливает "реальное" время только на периоды решения вспомогательных задач. Достигаемая при этом синхронизация функционирования компьютера разработчика со счетчиком реального времени обеспечивает полное совпадение хода ПО системы управления корпоративной сетью при повторении экспериментов с одинаковыми исходными данными, что существенно расширяет возможность поиска ошибок в процессе отладки.

Рис. 5. Архитектура системы комплексной динамической отладки и испытания

В ходе диссертационного исследования получены следующие основные результаты и сделаны выводы:

Проведен анализ современного состояния и перспективных направлений развития корпоративных сетей, который позволил сделать следующие выводы:

корпоративные сети являются одним из наиболее распространенных и перспективных направлений для решения многих задач информатизации на различных уровнях; накопленный опыт в области создания корпоративных сетей и дальнейшее развитие этого направления требует обобщения полученных результатов и проведения исследований для создания и научного обоснования методов повышения эффективности корпоративных сетей;

корпоративные сети, как правило, имеют иерархическую структуру, ориентированную на специфику конкретного применения, позволяющую эффективно проектировать крупномасштабные сети, обеспечивать согласованное качество управления на всех уровнях сети, информационную безопасность;

при создании и модернизации корпоративных сетей используются различные технологии и оборудование, что в конечном итоге создает определенные трудности при интеграции, модернизации и техническом обслуживании, поэтому требуется проведение работ по анализу специфики и настройке параметров корпоративных сетей.

Таким образом, проблема создания концепции управления корпоративными сетями, ориентированная на возможность адаптации аппаратных и программных средств для эффективного решения заданного набора прикладных задач, является актуальной.

Показано, что важной задачей, решаемой при управлении, является анализ структуры корпоративной сети, позволяющий проводить расчет характеристик сети, проводить отбор наиболее эффективных решений по управлению структурой.

Предложен концептуальный подход к анализу структуры корпоративной сети, основанный на следующих принципах:

главной целью анализа является исследование потоков данных, передаваемых по сети, поскольку их параметры оказывают определяющее влияние на качество работы сети;

основой (исходными данными) для анализа и формирования структуры сети являются исполняемые на сети приложения (задачи), которые формируют потоки данных, передаваемые по сети;

анализ проводится путем выделения информационной и технической составляющих структуры, определяющих источники и приемники потоков данных и оборудование для управления этими потоками;

результаты анализа информационной структуры являются исходными данными для формирования и анализа технической структуры корпоративной сети.

На основании подхода разработан двухуровневый метод расчета параметров потоков данных.

Разработаны средства для формального описания информационной структуры сети, однозначно задающие параметры приложений и их взаимодействие. Разработаны комплекс математических моделей, позволяющих, используя средства описания, проводить расчет характеристик информационной структуры. Модели, в частности, позволяют дифференцированно исследовать потоки данных каждого приложения. Исследована многоуровневая иерархическая информационная структура, наиболее часто встречающаяся на практике при построении корпоративных сетей. Исследования позволили сформулировать правило сохранения потоков в иерархической структуре при передаче данных внутри каждого уровня структуры, которое позволяет проводить разбиение узлов на группы при формировании структуры сети с учетом возможностей сетевого оборудования.

Исследованы различные варианты технической структуры сети, которые возможно сформировать для заданной информационной структуры, для чего также разработаны средства описания структуры и комплекс математических моделей для расчета характеристик. Варианты соответствуют наиболее распространенным технологиям построения корпоративных сетей: VLAN и VPN. Модели дают возможность оценить влияние каждого приложения на загрузку каналов связи и коммуникационного оборудования сети.

Проведено исследование корпоративной сети как объекта управления. Определены множество параметров сети, пространство состояний сети и параметры управления сетью. Это позволило выделить множества первичных и вторичных параметров и установить связи между ними. Определено множество базовых параметров, которые задают структуру сети и множество варьируемых параметров управления. Показано, что для реальных сетей при неизменных базовых параметрах пространства состояний является связными, т.е. возможно перевести сеть из одного состояния в другое за один шаг управления. Полученные результаты дают возможность определить конкретный состав параметров сети, выделить параметры управления и связать их с возможностями и параметрами сетевого оборудования, применяемого при создании сети.

Рассмотрены цели и задачи управления корпоративной сетью с учетом специфики работы приложений (задач) и требований к характеристикам их работы. Определены показатели качества работы сети с учетом требований к работе приложений. Данные результаты позволяют выделить и сформулировать задачи, решаемые на различных этапах создания и эксплуатации сети, определить состав параметров управления для каждой конкретной задачи (приложения).

Разработан концептуальный двухуровневый подход к управлению корпоративной сетью, предусматривающий два уровня управления, использующих базовые и варьируемые параметры управления. Основной идеей данного подхода является предварительная настройка сети на решение заданного набора задач с последующим оперативным управлениям элементами корпоративной сети при неизменных базовых параметрах. Такой подход соответствует объективно принятым способам управления, применяемым на практике и позволяющим снизить размерность решаемых задач и уменьшить время реакции сети на принимаемые управленческие решения.

На основании данного подхода разработан двухуровневый метод управления сетью, включающий решение задач настройки и оперативного управления.

Показаны возможности декомпозиции сети путем выделения отдельных подсетей, исследованы свойства потоков данных при декомпозиции, сформулированы задачи настройки и оперативного управления при декомпозиции сети, показаны преимущества применения принципа декомпозиции при управлении корпоративной сетью. Получены правила координации управления подсистемами, дающие возможность администраторам подсетей принимать обоснованные и согласованные решения. Для согласования целей управления предложено использовать аддитивные функционалы, включающие взвешенные функции качества управления отдельными подсетями, что позволяет локализовать задачи оперативного управления. Перечисленные результаты дают возможность свести общую задачу управления корпоративной сетью к совокупности задач управления подсетями, с выполнением требований к показателям качества работы как всей сети, так и отдельных подсетей.


загрузка...