Линейно-параметрические дискретные модели в форме разностных уравнений в задачах идентификации диссипативных механических систем (26.10.2009)

Автор: Зотеев Владимир Евгеньевич

Зотеев Владимир Евгеньевич

ЛИНЕЙНО-ПАРАМЕТРИЧЕСКИЕ ДИСКРЕТНЫЕ МОДЕЛИ

В ФОРМЕ РАЗНОСТНЫХ УРАВНЕНИЙ

В ЗАДАЧАХ ИДЕНТИФИКАЦИИ ДИССИПАТИВНЫХ

МЕХАНИЧЕСКИХ СИСТЕМ

Специальность 05.13.18 – «Математическое моделирование,

численные методы и комплексы программ»

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Самара – 2009

Работа выполнена на кафедре «Прикладная математика и информатика» Государственного образовательного учреждения высшего профессионального образования «Самарский государственный технический университет»

Научный консультант: – доктор физ.-мат. наук, профессор

Радченко Владимир Павлович

Официальные оппоненты: – доктор физ.-мат. наук, профессор

Жданов Александр Иванович

– доктор технических наук, профессор

Кораблин Михаил Александрович

– доктор технических наук, профессор

Семушин Иннокентий Васильевич

Ведущая организация: Южный федеральный университет,

г. Ростов-на-Дону

Защита диссертации состоится 28 декабря 2009 года в ___ часов на заседании диссертационного совета Д 212.217.03 ГОУ ВПО «Самарский государственный технический университет» по адресу: 443010, г. Самара, ул. Галактионовская, 141, ауд. 28.

Отзывы по данной работе в двух экземплярах, заверенные печатью, просим

направлять по адресу: Россия, 443100, Самара, ул. Молодогвардейская, 244,

Главный корпус, на имя ученого секретаря диссертационного совета Д 212.217.03.

С диссертацией можно ознакомиться в библиотеке Самарского государственного технического университета по адресу: 443100, г. Самара, ул. Первомайская, 18, корп. №1.

Автореферат разослан ________ 2009 года.

Ученый секретарь

диссертационного совета

Д 212.217.03 Губанов Н.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

Важнейшей проблемой в машиностроении является проблема идентификации нелинейных диссипативных механических систем в процессе их эксплуатации или прочностных промышленных испытаний. Это объясняется тем, что основным диагностическим признаком технического состояния диссипативной механической системы являются ее динамические характеристики (ДХ), в том числе показатель нелинейности системы. Результаты многочисленных исследований на конкретных примерах подтверждают непосредственную связь между техническим состоянием различного рода механических систем (например, усталостным разрушением материалов, возникновением и развитием микротрещин в деталях, появлением недопустимых люфтов в узлах конструкций, значительным износом контактирующих поверхностей, технологическим браком при сборке и т.п.) и ее динамическими характеристиками.

Решить задачу повышения достоверности и оперативности определения ДХ диссипативной системы можно только на основе новых математических моделей, описывающих результаты наблюдений динамического процесса на выходе системы и ориентированных на современный уровень компьютеризации исследований и применение статистических методов обработки экспериментальных данных.

Проблема построения таких моделей неразрывно связана с проблемой адекватности математического описания динамического процесса на выходе колебательной системы. Ее решению посвящены фундаментальные труды выдающихся математиков 18 века Л. Эйлера, Ж. Даламбера, Ж. Лагранжа, заложивших основы математического описания колебательных систем с конечным числом степеней свободы, а также работы ученых советской школы И.И. Артоболевского, А.Н. Боголюбова, В.В. Болотина, Ю.А. Митропольского, Я.Г. Пановко и др. Большой вклад в развитие математического описания распределенных колебательных систем, рассеяние энергии в которых вызвано внутренними процессами в материале, в теорию и практику моделирования вязкоупругого поведения материалов и гистерезисных явлений при циклическом деформировании, внесли ученые Н.Н. Давиденков, Г.С. Писаренко, Е.С. Сорокин, В.Т. Трощенко, Я.Г. Пановко и др. Построению математических моделей, описывающих кинетику твердых реологических тел, деформация которых является необратимой и описывается кривой ползучести, посвящены работы профессоров Ю.П. Самарина, В.П. Радченко.

В настоящее время существуют различные подходы и способы определения динамических характеристик механической колебательной системы. Среди них лидирующее место занимают высокоэффективные методы вибродиагностики, ориентированные на применение современных средств и алгоритмов вычислений и обработки информации, например, методы цифрового спектрального анализа, методы корреляционного анализа. Основу этих методов составляют стохастические параметрические модели временных рядов. Разработке и исследованию этих моделей, а также вопросам эффективного оценивания параметров моделей по результатам наблюдений, посвящены работы зарубежных ученых Т.В. Андерсена, Дж. Е. П. Бокса, Г.М. Дженкинса, Д.Г. Ваттса, М.Дж. Кендалла, С.Л. Марпла-мл., Р.Л. Кашьяпа, А.Р. Рао, С.М. Кей и др., а также работы В.С. Пугачева, А.И. Жданова, О.А. Коцюба и др.

Однако область применения этих методов функционально ограничена и исключает задачи, в которых основным диагностическим признаком технического состояния механической системы является характеристика рассеяния колебательной энергии, в том числе характеристика нелинейности диссипативной силы. Такие задачи возникают, в частности, при разработке гидравлических амортизаторов, исследованиях конструкционного демпфирования, то есть демпфирования, обусловленного потерями на трение в неподвижных соединениях (прессовых, заклепочных, резьбовых, шлицевых и т.п.), или внутреннего трения в материале при его циклическом деформировании.

Широко применяемые на практике методы определения характеристик рассеяния энергии колебаний различных механических конструкций и демпфирующих свойств материалов совершенно не вписываются в формат современных информационных технологий, применяемых в вибродиагностике. Как правило, эти методы громоздки, нередко требуют графических построений, применяемые алгоритмы вычислений построены на линеаризованных детерминированных моделях и используют минимально необходимое число точек эксперимента при полном отсутствии процедур, связанных со статистической обработкой результатов наблюдений. Попытки преодолеть эти существенные недостатки на основе разностных уравнений можно найти в работах В.А. Кармалита, В.К. Семенычева, А.Н. Тырсина и др. Однако для принципиально нелинейных диссипативных механических систем задача определения их параметров на основе линейно-параметрических дискретных моделей решена до конца не была.

Таким образом, необходимость коренного улучшения качества машиностроительных конструкций требует разработки и применения при диагностике технического состояния большого класса МС новых высокоточных, оперативных методов определения динамических характеристик, в том числе характеристик нелинейности механической системы как диагностического признака ее технического состояния, методов, соответствующих современному уровню компьютеризации и автоматизации исследований динамических процессов в машинах и механизмах. Основой разработки таких методов могут стать стохастические параметрические модели временных рядов, описывающие результаты наблюдений мгновенных значений динамического процесса на выходе системы при типовых тестовых воздействиях.


загрузка...