Халькогенсодержащие органические соединения для преобразователей энергии и информации. Выбор вида, свойства, способы и технология их получения (26.10.2009)

Автор: Дмитриенко Татьяна Геннадьевна

I 180 1,5 -5,6 -4,3

5,46 - - 12,0 12,45

240 1,7 -6,4 -4,8

II 90 1,3 -9,9 -5,0 7,25 -13,7 -23,1 75,0 77,10

III 180 2,6 -9,7 -8,3 5,93 -21,6 -13,5 65,0 69,50

IV 15 2,6 -5,6 -7,6 5,46 -5,2 -13,1 32,0 -

Величины электрокинетических потенциалов рассчитывали также по форму-ле с учетом концентрации:

- потен-циалы соответствующих компонентов (табл.10).

Была определена концентрация суспензии в приэлектродной зоне при электрофоретическом осаждении из гетеросуспензий в электрическом поле, задан-ном системой коаксиальных цилиндрических электродов на основании зависимос-тей выхода электрофоретического осадка от времени (рис. 23) и уравнению:

нию с традиционными (хлорин, капрон), применяемыми в Ni-Cd аккумуляторах, способствуют предотвращению шунтообразования.

6.2. Адсорбционные свойства макромолекул полимеров, применяемых в качестве сепараторов. Нами исследована адсорбция поливинилхлорида (ПВХ) при различных температурах из разбавленных растворов его в дихлорэтане на волокнистых сорбентах, используемых в качестве армирующих наполнителей полимерных композиционных материалов. Рассмотрено применение основного уравнения теории объемного заполнения микропор (ТОЗМ) для оценки параметров пористой структуры волокнистых сорбентов. Применение уравнения ТОЗМ к системам полимер – растворитель – волокно можно обосновать исходя из термодинамического подобия процессов сорбции на полимерах и микропористых сорбентах. С термодинамической точки зрения, процессы сорбции паров полимерами и микропористыми сорбентами подобны, поэтому закономерно их описание одним уравнением ТОЗМ. При изучении адсорбционных равновесий в системе поливинилхлорид марки С-7059-М (ПВХ) – растворитель - волокно из бинарных разбавленных растворов рассмотрено применение основного уравнения ТОЗМ для оценки параметров пористой структуры используемых волокнистых сорбентов (гидроцеллюлозного и полиакрилонитрильных волокон).

Изученные адсорбционные характеристики высокопрочных углеродных волокон из разбавленных растворов фенола и применение ТОЗМ для описания адсорбционных равновесий дало возможность рассчитать параметры пористой структуры углеродных волокон, что обеспечивает эффективное применение альтернативной технологии – поликонденсационного способа наполнения для углепластиков.

6.3. Термодинамика адсорбционных равновесий в системах ДАФС-25 – растворитель – сорбент. Приведеннные на рис. 24 изотермы адсорбции ДАФС-25 из ДИПЭ на активированном угле, силикагелях АСК, МСК, карбонате кальция и цеолите NaХ в области разбавленных растворов имеют одинаковый характер, при этом наибольшие значения величин избыточной адсорбции наблюдаются при адсорбции ДАФС - 25 на активированном угле, в меньшей степени на силикагелях МСК и АСК, цеолите NaX и меньше всего на карбонате кальция. Такие величины адсорбции можно объяснить строением молекулы дикетона. Последняя обладает звеньями, на периферии которых локально сос-редоточена электронная плотность (? - cвязи, свободные электронные пары).

Из возможных механизмов адсорбции вероятнее всего хемосорбция, что соответствует представлению о такой ориентации адсорбируемых молекул, при которой взаимодействие с поверхностью осуществляется за счет полярных групп, а цепочки углеводородных радикалов обращены к раствору. Можно предположить, что в механизме адсорбции на силикагелях главную роль играет эффективный объем, в котором сказывается влияние карбонильной группы. Из рис. 24 видно, что изотерма адсорбции на угле более крутая, что связано, очевидно, с возрастанием энергии адсорбционного потенциала микропор угля по сравнению с потенциалом более широких пор других адсорбентов. Заполнение тонких пор молекулами происходит уже при относительно низких концентрациях адсорбата в растворах.

Рис. 24. Изотермы адсорбции ДАФС-25 из ДИПЭ на адсорбентах АУ, NaX, силикагелях АСК и МСК и карбонате кальция при 298 К. n11-количество адсорбированного ДАФС-25 (ммоль?г -1), х1, - мольная доля ДАФС-25 в растворе; то же для рис. 2, 3. 1 - АУ, 2 - АСК, 3 - NaX, 4 – СаСО3, 5 - МСК.

Рис. 25. Изотермы адсорбции ДАФС-25 из разбавленных растворов ДИПЭ (1) и толуола (2) на цеолите NaX при 298 К.

Анализ экспериментально полученных изотерм адсорбции ДАФС - 25 из ДИПЭ и толуола на цеолите NaX показывает, что в начальной области концент-раций величины адсорбции ДАФС - 25 незначительны. Это можно объяснить кон-курентной адсорбцией ДАФС - 25 и растворителя (рис. 26).

Наибольшие величины адсорбции ДАФС - 25 из бинарных растворов наблюдаются на активированном угле, что не противоречит теории адсорбции на адсорбентах различной химической природы. Установлено, что величины адсорб-ции ДАФС - 25 из бинарных растворов при повышении температуры увеличивают-ся (рис. 27). По - видимому, в адсорбционной системе ДАФС - 25 – карбонат каль-ция с ростом температуры ослабляется взаимодействие молекул растворителя с адсорбентом. При этом конкурирующая способность молекул растворителя за обладание мест на поверхности карбоната кальция с повышением температуры становится малой.

Рис. 26. Изотермы адсорбции ДАФС-25 из разбавленных растворов в ДИПЭ на карбонате кальция при температурах 293 (1) и 313 К (2).

Рис. 27. Концентрационные зависимости изменения химического потенциала ?Ф (Дж?г-1) (1-5) сорбентов и свободной энергии Гиббса ?G (Дж?г-1) (1’-5’) адсорбции ДАФС-25 из толуола при 298 К. х1 - мольная доля ДАФС-25 в растворе; то же для

рис. 30, 31. 1,1'- NaX; 2, 2’ - АСК; 3, 3' - АУ; 4, 4' – СаСO3; 5, 5' -МСК.

Так как растворы очень разбавлены и растворимость растворяемого вещест-ва ограничена низкой мольной долей, изотерма изменения состава раствора преоб-разуется в индивидуальную изотерму адсорбции растворенного вещества, несмотря на возможность адсорбции значительного количества растворителя.

- коэффициент активности компонента 1 объемного раствора.

Изменение свободной энергии сорбционной системы вычисляли по уравне-нию:

где (Фx1 – Фx2) – изменение химического потенциала сорбента;

- изменение химического потенциала объемного раствора.

Рис. 28. Концентрационные зависимости изменения химического потенциала ?Ф (Дж?г-1) (1-3) сорбентов и свободной энергии Гиббса ?G (Дж?г-1) (1'-5') адсорбции ДАФС-25 из ДИПЭ при 298 К. 1,1’ - NaX; 2, 2’ – СаCO3; 3, 3' - АСК.

Наибольшие значения изменения химического потенциала ?Ф (рис. 28) и энергии Гиббса ?G наблюдаются при адсорбции из толуола на активированном угле, что хорошо согласуется с величиной избыточной адсорбции, а в меньшей степени – на карбонате кальция.

Концентрационные зависимости изменения химического потенциала ?Ф и энергии Гиббса ?G адсорбции ДАФС - 25 из ДИПЭ на цеолите NaX, карбонате кальция и силикагеле АСК, приведенные на рис. 28, свидетельствуют о том, что если изменения химического потенциала ?Ф и энергии Гиббса ?G ДАФС - 25 на цеолите NaX и карбонате кальция сравнимы по величине, то на силикагеле АСК они значительно выше.

Термодинамические функции позволяют более надежно проследить влияние растворителя. На рис. 29а) представлены изменения потенциала ?Ф и энергии Гиббса ?G при адсорбции ДАФС - 25 из толуола и ДИПЭ на силикагеле АСК. На основе рассмотренных значений изменения термодинамических функций можно утверждать, что адсорбция из ДИПЭ выше, чем из толуола, а на цеолите NaX влияние растворителя не слишком сказывается при адсорбции ДАФС-25.

Концентрационные зависимости изменения химического потенциала ?Ф и энергии Гиббса ?G (рис. 29 б) свидетельствуют, что в ДИПЭ адсорбция на карбонате протекает значительно лучше. В результате проведенного термодина-мического анализа можно указать на возможную конкуренцию растворителя с растворенным веществом за адсорбционные центры поверхности. Поверхности используемых адсорбентов химически неоднородны, так как на них находятся различные центры с высокой и низкой энергией адсорбции, как полярные, так и неполярные группы.

Проведенные исследования показали, что характер адсорбции из растворов зависит не только от свойств объемного раствора, но и от химической природы поверхности и размера пор сорбента.

Возможны процессы проникновения биологически - активных веществ на основе ДАФС - 25 через клеточные мембраны и в случае использования угля в качестве энтеросорбента это вещество, его метаболиты или продукты распада будут сорбироваться и выводиться из организма. Полученные данные могут быть использованы для создания новых энтеросорбентов, обладающих антиоксидант-ными свойствами, и которые могут быть применены для профилактики отравле-ний различного рода токсикантами.

Рис. 29. Концентрационные зависимости изменения химического потенциала ДФ (Дж?г-1) (1, 2) силикагеля АСК (а) и CaCO3 (б) и свободной энергии Гиббса ?G

(Дж?г-1) (1', 2') адсорбции ДАФС-25 из ДИПЭ (1, 1') и толуола (2, 2') при 298 К.

- электронной структуре органического катиона приводит к сильному изме-нению удельной электропроводности и, как следствие, поверхностной активности, которая нами была исследована для 4H – селенопирана, перхлората и бромцинката 2,4,6-трифенилселенопирилия, а также перхлоратов 2-метоксифенил, 4-фенил-тиохромилия и 2-фенил, 4-метилтиохромилия.

По величине электропроводности эти соли относятся к полупроводникам (удельная электропроводность в кристаллическом состоянии лежит в пределах (0,1 …8,1)?10-3 Cм/см. Сопоставление величин электропроводности перхлоратов показывает, что введение заместителей алкильного или арильного типа в боковую цепь вызывает снижение электропроводности почти на 1,5 – 2 порядка, что можно объяснить изменением степени сопряжения в углеродном остове катиона.

Увеличение числа фенильных заместителей в органическом катионе и пере-ход от бициклических соединений к моноциклическим сопровождается увеличе-нием предельного тока окисления на 2 порядка.

Предварительные исследования показали, что электровыделение кадмия на медном электроде протекает в две стадии:

Cd(Cu) (1)


загрузка...