Закономерности изменения свойств почв юго-востока Центрального черноземья под влиянием антропогенного воздействия (26.10.2009)

Автор: Чевердин Юрий Иванович

??¤????

???????¤??????

???????????¤??????

.-экв) от суммы катионов. Подчиненное положение занимает магний. Доля ионов кальция, в большинстве случаев, составляет 10-15% от суммы катионов.

Важно отметить, что в условиях Каменной Степи природные воды с высокой щелочностью и наличием соды встречались и ранее, хотя довольно редко. Это были единичные случаи, характерные для почв солонцовых комплексов. В настоящее время содовые воды распространились более широко, и они встречаются в виде грунтовых и прудовых вод. Отличительной особенностью грунтовых вод является их относительно низкая минерализация. В химическом составе грунтовых вод ион СО32- занимает подчиненное положение до 3,8 мг-экв/л отмечаемый не каждый год и не по всем участкам. Но даже такая сравнительно небольшая доля карбоната натрия в сумме с бикарбонатом поднимает реакцию воды до щелочной с показателями рН выше 8,0.

Состав водных вытяжек черноземных почв. Проведенные исследования на мониторинговых площадках показали, что за период наблюдений с 1989 г. по 2006 г. отмечается изменения в составе водных вытяжек. За истекший период увеличилось общее содержание солей, особенно в нижних горизонтах почвы – с 0,22 до 0,30%. В иллювиальном горизонте отмечено увеличение содержания сульфатов. По всем горизонтам почвы отмечено существенное увеличение щелочности, выраженное количеством гидрокарбонатов в водной вытяжке – с 0,15 до 0,72 мг-экв/100г. В составе катионов также произошли заметные изменения. Хотя лидирующее положение, в общем, осталось за кальцием, но это превышение сузилось до незначительных величин. Если в 1989 г. различия между кальцием и натрием составляли пятикратную величину в пользу кальция, то в 2004 г. она составляла всего несколько десятых долей, и в одних случаях превалировал кальций, в других - натрий.

Глава 5. Процессы почвообразования в почвах черноземных солонцовых комплексов в постмелиоративный период их развития

Морфологическое строения почвенного профиля почв солонцовых стационаров. В условиях солонцового стационара № 1 через 55 лет появились первые морфологические признаки солонцового процесса в слое насыпанного материала гумусового горизонта чернозема. На поверхности почвы под слоем подстилки появились редкие белесые скелетаны. Изменилась структура бывшего чернозема. Мелкие комковато-зернистые агрегаты слиплись в глыбки и призмовидные отдельности, на боковых гранях которых встречаются редкие натечные гумусово-глинистые кутаны. На месте бывшего пахотного слоя, ныне погребенного на глубину около 15 см постепенно начинает восстанавливаться солонцовый горизонт. В сухие годы в нем появляются вертикальные трещины, которые обособляют призмовидные отдельности шириной 6-12 см с гумусово-глинистыми черными натечными кутанами на боковых гранях. Вместе с тем, в этом горизонте сохраняются признаки, свидетельствующие о том, что материал раньше подвергался отвальной вспашке. На границе между насыпанным слоем и погребенной почвой, а также внутри бывшего пахотного слоя погребенной почвы встречаются фрагменты пылеватых белесых скелетан, имеющих толщину от 1 до 3 мм, длину 1-5 см и ширину 0,5-2 см. Погребенный бывший пахотный слой имеет характерную структуру, представленную угловатыми агрегатами неправильной формы с матовыми гранями, возникающими в результате растрескивания крупных плотных глыб при усадке по разным направлениям.

Таким образом, активная регенерация свойств черноземов и солонцов в пределах бывшего пахотного слоя и развитие солонцового процесса в материале гумусового горизонта чернозема, нанесенного поверх распаханного солонца для его мелиорации (прием землевания), и полное соответствие результатов регенерации ареалам исходных почв до мелиорации (согласно почвенной карте 1952 г.) позволяет сделать заключение, что современные факторы почвообразования продолжают поддерживать почвенные процессы, которые к середине XX века привели к формированию почвенной комбинации из черноземов обыкновенных и черноземов перерытых на водоразделах между лощинами, черноземов солонцеватых на бортах лощин и солонцов и черноземов выщелоченных в днищах лощин.

Физические свойства мелиорированных почв. Проведенные исследования показали изменение физических свойств солонцовой почвы и сохранение в длительном последействии качественной структуры, свойственной черноземам, нанесенной на поверхность массы. Практически это проявляется в снижении глыбистости и средневзвешенного диаметра структурных отдельностей. Возможно, на этих вариантах, создаются условия, приводящие к купированию пептизации почвенных коллоидов при изменении влажности почвы.

Землевание солонцов черноземной массой оказалось более радикальным средством в изменении свойств почв. При сухом рассеве средневзвешенный размер почвенных частиц для верхнего насыпного слоя почвы 0-15 см был намного ниже по сравнению с глубокой вспашкой и равнялся при применении одного землевания (делянка 3) 5,56 мм, землевание в сочетании с навозом (делянка 11) – 4,77 мм, землевание с предварительным внесением гипса 10 т/га (делянки 4 и 10) – 4,80-4,51мм. Для погребенного горизонта 15-35 см эти показатели составили соответственно 5,83 , 5,62 и 5,83-4,99 мм. Выявленные закономерности изменения размера частиц при сухом рассеве имели такую же направленность и при мокром просеивании. Размер частиц уменьшался от варианта с землеванием к вариантам с навозом в дозе 60 т/га и гипсованию по всем исследуемым горизонтам почвы.

В целом, агрофизические свойства мелиорированных почв отличаются высокими показателями структурности. Наиболее оптимальными значениями структуры почв характеризуются варианты с предварительным нанесением черноземной массы на солонцовые пятна. Для верхнего мелиорированного слоя почвы 0-15 см коэффициент структурности равнялся 1,89-7,65. В то время как на контрольном варианте с одной глубокой вспашкой коэффициент структурности составлял 2,49 (делянка №15), обычная глубокая вспашка на 30-35 см в сочетании с навозом не способствовала заметному улучшению структурности солонцовых почв. Коэффициент структурности в этом случае был близок к варианту со вспашкой – 2,61. То же самое можно отметить и в отношении варианта вспашки в сочетании с гипсованием, на котором коэффициент структурности составил 1,63. Относительно более высокой структурностью верхнего горизонта почвы характеризовались варианты комплексной мелиорации, включавших в себя предварительное гипсование с нанесением массы чернозема слоем 15 см. Значение коэффициента структурности составило в этом случае 4,25-5,28.

Состав водных вытяжек почв. Наиболее благоприятный состав и минерализация водных вытяжек выявлены в горизонтах почвенных разрезов, отнесенных к несолонцовым разностям – разрезы 242, 273, 275 и 278. Эти разрезы характеризуются низким содержанием солей в первом полуметре. Сухой остаток в них колеблется в интервале 0,16-0,26%. В иллювиальном горизонте количество солей увеличивается до 0,44%. Профильное распределение солей с увеличением от верхних горизонтов к нижним показывает, что они поступают на этих почвах из нижележащих горизонтов. В этих почвах при относительно низкой концентрации солей содержание ионов натрия достигает 5,21 мг-экв/100 г почвы, а ионов кальция варьирует всего от 0,25 до 0,75 мг-экв/100 г почвы. В разрезах 242 и 273 велика доля магния. Максимальные значения отмечены в верхних горизонтах – 2,75 мг-экв/100 г. В почвообразующей породе опускается до 1,0 -2,0 мг-экв/100 г. В разрезах 275 и 278 содержания магния по всему профилю колеблется в интервале 0,25-0,75 мг-экв/100 г.

В анионном составе отмечены существенные изменения по отношению к началу проведения исследований. По всем анализируемым черноземным почвам стационара в настоящее время отмечено наличие хлоридов. Если в 1953 г. хлориды в основном отсутствовали в составе водных вытяжек (И.Н.Антипова – Каратаев, И.А.Юрин, Г.М.Кадер и др., 1960, с.139). То в настоящее время они отмечаются по всем разрезам и максимальное значение достигает величины 1,1 мг-экв/100 г почвы (разрез 242). Но в основном в пределах 0,55-0,75 мг-экв/100 г.

Состав анионов в основном не изменился и в большинстве случаев он сохранил гидрокарбонатно-сульфатный состав. Вместе с тем, необходимо отметить, общее увеличение содержания гидрокарбонатов и сульфатов. В настоящее время они находятся на более высоком уровне. В период 1953-1955 гг. содержание сульфатов в черноземе обыкновенном составляло 0,21-0,68 мг-экв/100 г почвы в слое почвы 0-15 см и повышалось до 2,08 – 2,64 мг-экв/100 г в слое 130-150 см. По данным 2007 г. содержание сульфатов в черноземах стационара изменялось от 0,77 - 4,11 мг-экв/100 г в верхнем слое почвы до 0,5-3,6 мг-экв/100 г почвы в нижних иллювиальных горизонтах. Такая же закономерность отмечается и по содержанию гидрокарбонатов. Особенно заметно увеличение их содержания в переходных к почвообразующей породе горизонтах. Так, если в 1955 г. содержание HCO3 в слое 0 - 15 см составляло 0,50 мг-экв/100 г, то в 2007 г. оно было выше – до 0,95 мг-экв. На глубине 130-150 см соответственно – 2,28 мг-экв/100 г и 0,85 – 3,0 мг-экв/100 г.

Присутствие нормальной соды отмечается лишь по отдельным разрезам и преимущественно в нижних горизонтах. При этом в количественном выражении современное содержание СО3 несколько выше, чем в первые годы исследований. В настоящее время содержание СО3 составляет 0,3-0,6 мг-экв/100г, а в 1953-1955 гг. не превышало величину 0,2 мг-экв/100г почвы.

Под влиянием прогрессирующих процессов вторичного осолонцевания на общем фоне повышения засоленности почв стационара №1 происходит повышение содержания сульфатов и хлоридов натрия при постепенном повышении щелочности почвенных растворов. Почвенные растворы почв стационара становятся более щелочными, особенно в подпахотных горизонтах (ВС, BD).

Состав обменных катионов. Землевание солонцов материалом гумусового горизонта чернозема способствовало увеличению запасов обменного кальция в мелиорированной почве. Вместе с тем, сохранение почвы в гидроморфном режиме с периодическим промыванием поверхностных горизонтов талыми водами весной и интенсивным испарением и транспирацией влаги летом вызвали постепенное накопление водорастворимых солей и небольшого количества обменного натрия. В результате в вариантах землевания без гипсования (делянка № 10) в 2000-х годах верхние горизонты до глубины 50 см содержали обменный кальций в пределах 59-64%, обменный магний – 24-29%, и обменный натрий – 7-15% от ЕКО (табл. 2).

Для чернозема на делянке №15 характерно наиболее высокое содержание обменного кальция (71-78% от ЕКО) и наименьшее содержание обменного магния (18-23% от ЕКО). Благодаря расположению исследуемого чернозема в составе солонцового комплекса в нем появляется заметное количество обменного натрия на глубине более 20 см, составляющее 1-2 мг-экв/100 г (2-4% от ЕКО).

Землевание с дополнительным гипсованием (делянка № 12) в длительном последействии способствует более медленному изменению состава обменных катионов, тормозя восстановление солонца. По этой причине в этом варианте в настоящее время наблюдается самое лучшее соотношение обменных катионов по сравнению со всеми остальными вариантами мелиорации, выполненной полвека назад, но оно все равно значительно хуже, чем в черноземе, расположенном в том же солонцовом комплексе. Доля обменного кальция составляет 64-68%, доля магния – 25-27%, а доля натрия – 5-8% от ЕКО.

Таблица 2 - Состав обменных катионов в почвах солонцового стационара №1 (2003 г.)

точка опробования* Глубина, см Обменные катионы

мг-экв/100 г почвы % от ЕКО

Ca Mg Na K ЕКО Ca Mg Na K

1* 0-20 34,28 9,27 0,52 0,40 44,47 77,1 20,8 1,2 0,9

20-35 31,47 7,57 1,00 0,30 40,34 78,0 18,8 2,5 0,7

35-50 37,84 12,60 2,10 0,41 52,95 71,5 23,8 4,0 0,8

2* 0-20 20,66 14,67 8,63 0,41 44,37 46,6 33,1 19,5 0,9

20-35 18,94 18,63 16,77 0,37 54,71 34,6 34,1 30,7 0,7

35-50 22,27 12,25 14,67 0,33 49,52 45,0 24,7 29,6 0,7

3* 0-20 26,80 14,54 5,97 0,31 47,62 56,3 30,5 12,5 0,7

20-35 26,26 16,70 9,04 0,40 52,40 50,1 31,9 17,3 0,8

35-50 37,84 12,60 9,18 0,42 60,04 63,0 21,0 15,3 0,7

4* 0-20 23,50 12,83 4,56 0,32 41,21 57,0 31,1 11,1 0,8

20-35 23,20 12,74 7,46 0,29 43,69 53,1 29,2 17,1 0,7

35-50 28,76 13,95 7,52 0,36 50,59 56,8 27,6 14,9 0,7

5* 0-20 28,60 12,74 3,10 0,36 44,80 63,8 28,4 6,9 0,8

20-35 28,90 11,45 7,54 0,57 48,46 59,6 23,6 15,6 1,2

35-50 25,70 12,60 4,58 0,57 43,45 59,1 29,0 10,5 1,3

6* 0-20 29,50 11,10 2,40 0,30 43,30 68,1 25,6 5,5 0,7


загрузка...