Разработка и создание самообучающейся технологической системы с адаптивным управлением параметрами качества поверхностного слоя деталей машин (26.07.2010)

Автор: Петрешин Дмитрий Иванович

Разработке и использованию самообучающихся технологических систем (СТС) и самообучающихся методик в определении трудоемкости изготовления деталей машин и в управлении металлообработкой посвящены работы И.В. Акимова, А.Н. Иноземцева, Н.И. Пасько, М.А. Попова, И.Б. Рубашкина.

Проведенный анализ обзора работ по теме диссертации позволяет сделать следующие выводы:

1. Анализ работ В.Ф. Безъязычного, А.О. Горленко, Д.Г. Евсеева, А.Д. Макарова, А.А. Маталина, В.С. Мухина, Э.В. Рыжова, В.М. Смелянского, В.К. Старкова, А.Г. Суслова, А.М. Сулимы, О.Н. Федонина, В.П. Федорова других ученых показал, что эксплуатационные свойства деталей машин в значительной мере определяются параметрами качества поверхностного слоя. Наибольшее влияние на эксплуатационные свойства оказывают параметр шероховатости Ra, поверхностные остаточные напряжения и поверхностная микротвердость. В работах профессора А.Г. Суслова показано, что эксплуатационные свойства деталей машин и их соединений характеризуются комплексными параметрами качества поверхностного слоя. Например, комплексный параметр Cx, используемый для оценки качества поверхности трения включают в себя параметры шероховатости, волнистости, макроотклонения и физико-механические параметры поверхностного слоя.

2. Ввиду изменения жесткости станка, износа инструмента, колебаний припуска и твердости заготовок имеет место рассеяние параметров состояния обработанных в ней поверхностей, являющиеся причиной разброса их эксплуатационных свойств и возможного брака. Уменьшить величину разброса и тем самым стабилизировать получение заданных параметров качества поверхности можно за счет использования АдСУ качеством обрабатываемой поверхности.

3. Наибольшее распространение, как в нашей стране, так и за рубежом нашли АдСУ точностью обработки деталей и повешению производительности обработки на черновых операциях. Разработке же АдСУ качеством поверхностного слоя уделяется недостаточно внимания. Хотя использование таких систем позволит в полной мере автоматизировать процесс обеспечения качества обрабатываемых деталей.

4. Несмотря на различие решаемых задач СТС все же просматриваются общие для них черты обучения и самообучения:

для обучения любой системы необходимо запускать ее в пробную эксплуатацию, в процессе которой она определяет или математическую модель процесса управления или уточняет коэффициенты математической модели;

использование банка данных (знаний) для накопления информации об объекте с целью уточнения математической модели и использовании ее при управлении;

наличие математического аппарата для обработки полученных результатов;

наличие информационно-измерительных элементов для получения недостающей информации об объекте управления.

5. На настоящий момент существуют СТС лишь для обеспечения оптимальной стойкости инструмента, прогнозирования и управления погрешностью обработки и для прогнозирования трудоемкости изготовления деталей машин. Описание структуры, алгоритма работы СТСАУ параметрами качества поверхностного слоя в научной литературе нет.

6. Из многочисленных факторов, влияющих на формирование шероховатости поверхности, следует выделить величину продольной подачи и скорость резания. Эти два фактора оказывают одно из основных влияний на формирование шероховатости и ими можно управлять в процессе обработки. Наибольшее же влияние на формирование шероховатости оказывает продольная подача.

7. На поверхностную микротвердость обработанной поверхности, влияют режимы резания, геометрические параметры режущего инструмента и степень его изношенности, свойства материалов инструмента и детали и т.д. При повышении скорости резания до оптимальной степень наклепа обработанной поверхности уменьшается, а при дальнейшем повышении скорости резания наклеп повышается. Зависимость наклепа от величины подачи может быть монотонно убывающей, монотонно возрастающей или носит экстремальный характер. Характер этих зависимостей определяется скоростями резания и изменением средней температуры контакта, при изменении подачи.

8. Остаточные напряжения в поверхностном слое являются следствием пластической деформации при резании, и на их формирование в основном влияют такие факторы, как силовое поле, температура резания, фазовые и структурные превращения. Применение методов и режимов обработки, приводящее к увеличению силы резания, вызывает увеличение остаточных напряжений сжатия и снижение напряжений растяжения, за исключением обработки пластичных металлов, когда увеличение силы резания вызывает противоположный эффект. Изменение режимов резания, влекущее за собой увеличение температуры резания, ведет к росту остаточных напряжений растяжения и уменьшению напряжений сжатия.

9. При обработке новых материалов, новыми инструментальными материалами, когда справочные данные по ним отсутствуют или они не адекватны реальным условиям, появляется проблема в определении режимов обработки (величина подачи, скорость резания, глубина резания), обеспечивающие заданное качество поверхности. Поэтому весьма актуальной является задача автоматизации процесса назначения и уточнения режимов резания непосредственно на рабочем месте для обеспечения заданных параметров качества поверхности. Решение этой задачи становится возможным с созданием самообучающихся технологических систем.

В результате анализа состояния проблемы были сформулированы цель работы и задачи исследований.

Во второй главе изложена общая методология разработки СТСАУ обеспечения заданных параметров качества поверхностного слоя деталей машин, в которой рассматриваются вопросы постановки технологической задачи решаемой СТСАУ, определения степени влияния входных факторов на выходные параметры процесса резания, выбора способа управления, разработки структурной схемы и алгоритма функционирования СТСАУ.

Анализ разработок АдСУ технологическим оборудованием показывает, что при создании таких систем важным этапом является формулировка технологической задачи, для решения которой создается система. Для выявления технологической задачи необходимо установить причину, препятствующую достижению заданного уровня выходных показателей процесса резания. В данном случае выходными показателями процесса резания являются параметр шероховатости Ra, поверхностная микротвердость, поверхностные остаточные напряжения и комплексный параметр качества поверхностного слоя Cx обработанной поверхности. Препятствием для достижения заданного качества поверхностного слоя деталей машин могут быть следующие причины: состояния ТС, колебания припуска и твердости заготовки, износ режущего инструмента.

Как показывает анализ справочной и научной литературы, не для всех обрабатываемых материалов и условий обработки имеются математические зависимости, предсказывающие параметры качества обработанной поверхности после механической обработки. Это также является препятствием для достижения заданных параметров качества поверхностного слоя (ПКПС) деталей машин и применения новых материалов.

В большинстве случаев для предсказания ПКПС деталей машин используются стохастические математические модели, полученные в результате статистической обработки результатов эксперимента. Для получения стохастических математических моделей связывающих условия обработки и ПКПС обработанной поверхности непосредственно на рабочем месте может быть предложен метод самообучения с использованием ТС с ЧПУ и ПЭВМ, которая предназначена для определения параметров математической модели, хранения и управления. Суть метода самообучения ТС заключается в:

1) проведении активного эксперимента непосредственно на рабочем месте, при тех условиях, при которых система должна работать;

2) получении и обработке результатов эксперимента и определении параметров математической модели, связывающей условия обработки и ПКПС обработанной поверхности;

3) использовании полученной модели для определения закона управления при адаптивном управлении ПКПС.

На основании выше изложенного в качестве основной технологической задачи, для решения которой создается СТСАУ, примем задачу технологического обеспечения заданных параметров качества поверхностного слоя обработанной поверхности (шероховатость, поверхностная микротвердость, поверхностные остаточные напряжения, комплексный параметр Cx) на рабочем месте с использованием СТСАУ.

Управление объектом может оказаться не эффективным, если не будет определена взаимосвязь между входными факторами и выходными параметрами объекта управления, по которым ведется управление. Для выявления наиболее эффективного способа управления теоретически определена степень влияния величины продольной подачи, скорости и глубины резания на формируемые параметры качества поверхностного слоя. При определении степени влияния использовались математические модели (табл. 1), полученные В.Ф.Безъязычным, Д.Д.Медведевым и А.Г.Сусловым.

Таблица 1 - Математические модели для оценки степени влияния

Математическая модель Условия

Параметр шероховатости Ra. Получистовое и чистовое точение, наружные поверхности

, мкм [А.Г. Суслов] S = 0,05-0,43 мм/об;

V = 71-282 м/мин;

r = 0,5-2 мм;

? = 4 – (-40)°.

Величина максимальных растягивающих напряжений.

Точение, наружные поверхности

, МПа [Д.Д. Медведев]

, МПа [В.Ф. Безъязычный] S = 0,07-0,43 мм/об;

V = 50-210 м/мин;

r = 0,5-2 мм.

Поверхностная микротвердость. Точение, наружные поверхности.

, [А.Г. Суслов]


загрузка...