Полигетероарилены с бензазиновыми группами на основе изатина (25.01.2010)

Автор: Гойхман Михаил Яковлевич

Таким образом, реализация синтеза полиазинов с бензпиридиновыми звеньями позволила получить большое семейство металл-полимерных комплексов с широким спектром ценных в практическом отношении свойств.

Глава 3. РЕАКЦИИ В ЦЕПЯХ ПОЛИМЕРОВ С УЧАСТИЕМ КАРБОКСИЛЬНЫХ И ЭПОКСИДНЫХ ГРУПП. СИНТЕЗ СВЕТОЧУВСТВИТЕЛЬНЫХ ПОЛИМЕРОВ

Обзор литературных данных по исследованию реакций взаимодействия эпоксидных соединений с веществами, содержащими подвижный атом водорода (аминами, спиртами, кислотами), показал, что эти реакции представляют альтернативу известным методам для ковалентного связывания нелинейных оптических хромофоров с макромолекулами. Установлено, что в указанных целях целесообразно использовать полимераналогичные превращения эпоксидированных соединений с соединениями, содержащими карбоксильную группу, поскольку эти превращения проводятся в мягких условиях и при этом не требуются дефицитные катализаторы. Этот подход был использован в настоящей работе при проведении реакций в цепях полимеров (полиамидоимидов, форполимеров полибенз-оксазинонимидов), содержащих боковые карбоксильные группы.

Реакции в цепях полимеров (полиамидоимидов, форполимеров полибензоксазинонимидов), содержащих боковые карбоксильные группы.

Непосредственной задачей данного этапа работы являлось создание новых имидсодержащих фоточувствительных композиций (КФ): ПАИ-2-КФ и ПАК-ПБОИ-1-КФ на основе содержащих карбоксильные группы полиамидоимидов (ПАИ-2) и форполимера (полиамидокислоты) полибензоксазинонимида (ПАК-ПБОИ-1). При этерификации этих полимеров глицидилметакрилатом (ГМА) получены полимеры, содержащие боковые метакрилоильные группы ПАИ-2-Ф и ПАК-ПБОИ-1-Ф, соответственно:

ПАК-ПБОИ-1-Ф

В качестве катализаторов этерификации использованы диметилбензиламин (ДМБА) и дициклогексилпероксидикарбонат (ЦПК). На основе синтезированных полимеров получены фоточувствительные композиции, в которых при экспонировании (ртутная лампа 350 Вт) имело место сшивание метакрилоильных звеньев по механизму фотоинициированной радикальной полимеризации. Приготовление негативных фоточувствительных композиций осуществлялось путем внесения сенсибилизирующих добавок (кетон Михлера (М), N-фенилмалеимид (ФМИ), азидосульфонилфенилмалеимид (АМИ) в растворы полимеров в N-метилпирролидоне.

Рис. 5. Характеристические кривые исходных ПАК-ПБОИ-1-Ф (1) и Со(ПАИ-ПАК-ПБОИ)-Ф (2) и композиций на их основе, содержащих фоточувствительную добавку 5 масс.% М + 2 масс.% АМИ + 2 масс.% ФМИ (по отношению к массе полимера). Композиция на основе: 3 – Со(ПАИ-ПАК-ПБОИ)-Ф, 4 - ПАК-ПБОИ-1-Ф.

d-толщина сшитого слоя (мкм), Н – экспозиция (мин).

Наилучшие результаты получены для фотокомпозиций, содержащих тройную смесь: М-АМИ-ФМИ. Показано определяющее влияние на свойства фоточувствительных композиций содержащихся в полимерах фрагментов метилен-бис-антраниловой кислоты (ПАК-ПБОИ-1-КФ) по сравнению с фрагментами 3,5-диаминобензойной кислоты (ПАИ-2-КФ). В случае ПАК-ПБОИ-1-КФ светочувствительность композиции Sпор (величина, обратная экспозиции, требуемой для начала задубливания образца) увеличивается и составляет 30 см2Дж-1 (что следует из приведенной на рис.5 характеристической кривой для негативного фоторезиста). Необходимо подчеркнуть, что синтезированные полимеры обладают хорошими термическими и диэлектрическими характеристиками, а также механической прочностью.

Полимеры с нелинейными оптическими свойствами второго порядка.

Изложению экспериментальных данных, относящихся к синтезу, предшествует обзор литературы, в котором приводятся необходимые для понимания работы основные понятия нелинейной оптики, рассматриваются полимерные среды, используемые в нелинейной оптике.

В продолжение работы по химической модификации карбоксилсодержащих полимеров на основе полиамидоимида ПАИ-1, имеющего в повторяющемся звене свободную карбоксильную группу, и ряда азокрасителей синтезировано семейство нелинейных оптических полимеров. В экспериментах использовали выпускаемые промышленностью для целей нелинейной оптики азокрасители: Дисперсный Оранжевый 13 (4-[4(-(фенилазо)-1-нафтилазо]фенол, ?max = 427 нм) и Дисперсный Желтый 7 (2-метил-4-[4(-(фенилазо)-1-фенилазо]фенол, ?max = 385 нм). Для сравнения был использован полученный нами 4-(4(-нитрофенилазо)фенол (?max = 375 нм). Все красители содержали реакционноспособную гидроксильную группу, что позволило получить соответствующие глицидиловые эфиры, например

Модификация ПАИ-1 глицидиловыми эфирами азокрасителей протекает по схеме:

Реакция проводилась в условиях, которые были подобраны в случае использования глицидилового эфира 4-(4(-нитрофенилазо)фенола (растворитель ДМФ, температура 60(C, двукратный мольный избыток хромофора, катализатор – диметилбензиламин (ДМБА)). В случае азокрасителя Дисперсного Красного 1 реакция этерификации не реализуется. Вероятно, в этом случае диметиламиногруппы красителя катализируют побочные реакции, связанные с полимеризацией ?-окисных циклов (вне основного процесса этерификации).

Степень этерификации (по данным 1Н ЯМР спектроскопии) монотонно возрастает и через 2 суток достигает значений порядка 40-50% и выше. При прочих равных условиях на величину степени этерификации существенное влияние оказывает природа выбранного хромофора. Наибольшая степень этерификации (?max = 95%) соответствует случаю глицидилового эфира 4-(4(-нитрофенилазо)фенола. Наличие в хромофоре двух фенилазогрупп и/или нафтилазогруппы значительно снижает ?.

С использованием термомеханического, дилатометрического, денситометрического и рентгеновского методов было изучено влияние содержания азобензольных хромофорных групп модифицированного полиамидоимида на фазово-агрегатное состояние образцов. Термомеханические кривые (рис.6) первичного нагревания пленок от 20 до 3000C отражают типичные для аморфных полимеров переходы: низкотемпературный переход (размягчение), плато высокоэластичности и высокотемпературную ветвь. Методом ТГА были определены термические характеристики хромофора 4-(4(-нитрофенилазо)фенола: (0 = 2300С и (10 = 2800С. Это позволило дать детальную характеристику термомеханического поведения образцов при нагревании до 3000С. Деструкция боковых хромофорных групп у полимеров с ? = 15, 30, 50, 80%, имеющая место при 270-2800С, вызывает повышение деформируемости по сравнению с исходным полимером.

Рис.6 Термомеханические кривые пленок ПАИ-1, модифицированных глицидиловым эфиром 4-(4(-нитрофенилазо) фенола, с разной степенью этерификации ?: (кр. 1) – исходный ПАИ, (кр. 2) - ? = 15%, (кр. 3) - ? = 30%, (кр. 4) - ? = 50%, (кр. 5) - ? = 80%, (кр. 6) - ? = 90%. Напряжение растяжения ? = 0.3 МПа. Скорость нагревания 10 град/мин.

На кривых дилатометрических зависимостей (рис.7) наблюдали не сокращение размеров образцов, а, напротив, их линейный рост. Термонеобратимость (т.е. отсутствие сокращения при повторном нагревании) указывает на повышенный уровень межцепного взаимодействия в полимерах, содержащих сильно взаимодействующие группы.

Рис. 7. Дилатометрические кривые полимеров. Напряжение растяжения ? = 0. Обозначение на рис. 6.

Особенностью результатов термомеханических исследований образцов (рис.6) является ярко выраженный инверсионный характер изменения относительного удлинения пленок полимеров в зависимости от степени этерификации (. Величина относительной деформации ? первоначально уменьшается при изменении ? с 15 до 30%, а затем монотонно возрастает с увеличением доли боковых хромофорных групп в полимере. Инверсионный характер зависимости проявляется резко. Так, величины модуля упругости Е (E = ?/?, где ? = 0.3 МПа, ? – относительная деформация), рассчитанные при 2000С, с изменением ? от 0 до 90% соответственно равны 1.6, 1.88, 3.37, 2.59, 1.32 и 0.69 МПа. Максимальная величина Е = 3.37 МПа достигается для полимера с ? = 30%, возрастая в 1,8 раза по сравнению с Е для полимера с ? = 15%, затем уменьшается и при максимальном содержании боковых цепей E почти в 5 раз меньше, чем для полимера с ? = 30%.

Такой инверсионный характер изменения свойств модифицированных полимеров является результатом конкурирующего влияния двух процессов, ведущих к изменениям в системе межцепных связей. Это - межцепное взаимодействие, обусловленное образованием водородных связей между амидными и карбоксильными группами ПАИ, а также взаимодействие боковых хромофорных групп. В ПАИ-1, в отличие от модифицированных полимеров, нет стерических затруднений для взаимодействия полярных групп. При увеличении ? свыше 15% определяющую роль в формировании упаковки надмолекулярной структуры полимеров играют звенья с боковыми группами.

Поскольку нагревание полимеров может сопровождаться процессами сшивания с образованием сетчатой структуры, были проведены опыты по установлению предела растворимости образцов в N-МП после нагревания до различных температур. Эти исследования показали, что после нагревания выше 2200С полимеры теряют растворимость, т.е. образуется сетка с химическими узлами. Конкретная температура образования сетчатой структуры зависит от ?. Наибольшая начальная температура образования сшивок, равная 2700С, была обнаружена для исходного ПАИ-1, наименьшая – 2200С – для полимера с ( =90%. Следовательно, нагревание образцов до 2000С в экспериментах по ориентации звеньев хромофоров в поле коронного разряда - что необходимо для проявления полимерами нелинейных оптических свойств второго порядка - не вызывает сшивание макромолекул.

Дифрактограммы полимеров с различной степенью этерификации ? характеризуются наличием рефлекса в области 2? = 5 град. и аморфного гало в области 15-25 град. Четкий рефлекс с межплоскостным расстоянием 1,8 нм, вероятно, связан с периодичностью межмолекулярной упаковки жестких фрагментов полимерной цепи, т.к. положение этого рефлекса практически не изменяется с ростом степени этерификации ПАИ-1. Небольшое смещение рефлекса в область более малых углов в случае этерифицированных полимеров можно объяснить конформационными перестройками полимерной цепи с боковыми хромофорными группами. Изменение профиля аморфного гало этерифицированных образцов по сравнению с исходным ПАИ-1 свидетельствует об изменениях межмолекулярной упаковки полимерных цепей.

Нелинейные оптические (НЛО) свойства полимерных покрытий.

Нелинейные оптические свойства покрытий ПАИ-1, модифицированных глицидиловыми эфирами 4-(4(-нитрофенилазо)фенола, (4-[4(-(фенилазо)-1-нафтилазо]фенола (DO13) и (2-метил-4-[4(-(фенилазо)-1-фенилазо]фенола (DY-7) изучали методом регистрации интенсивности генерации второй световой гармоники при облучении импульсным лазером (YAG-Nd3+). длина волны падающего излучения составляла 1.064 мкм, длительность импульса 15 нс. Ориентацию хромофоров в пленочных покрытиях (полинг) проводили в поле коронного разряда. Эффективность генерации второй гармоники характеризовали нелинейным оптическим коэффициентом d33.

Для образцов ПАИ, содержащих звенья 4-(4(-нитрофенилазо)фенола было показано, что коэффициент d33 закономерно возрастает с увеличением степени этерификации полимера, т.е. с ростом содержания хромофора (табл. 5). Максимальная величина d33 составила 7.6 Пм/В.

Таблица 5

Коэффициент d33 для образцов ПАИ, содержащих звенья 4-(4/-нитрофенилазо)фенола, с различной степенью этерификации ?

Степень этерификации ?, % Коэффициент d33, Пм/В

Оценку НЛО свойств ПАИ, содержащих звенья красителей Дисперсного Оранжевого-13 (DO-13) и Дисперсного Желтого-7 (DY-7) проводили на образцах с максимально достигнутыми значениями ?. Оказалось, что ПАИ, содержащий звенья DY-7 с ? = 80% генерирует вторую гармонику, причем коэффициент d33 составил 4.5 Пм/В. Для ПАИ, содержащего звенья DO-13, генерация второй гармоники не наблюдалась, что обусловлено трудностями поляризации пленки этого полимера в коронном разряде.

Химическая модификация поли(метилметакрилат)-со-(глицидил-метакрилат)а карбоксилсодержащими хромофорами хинолинового ряда.

Другой способ введения боковых хромофорных групп в полимерную цепь за счет взаимодействия эпоксидной и карбоксильной группы был осуществлен путем химической модификации поли(метилметакрилат)-со-(глицидилметакрилат)а. Несомненный интерес представляют неисследованные ранее хромофоры, являющиеся производными 2-стирилхинолин-4-карбоновой кислоты. Это соединение открывает возможность удлинения системы сопряженных связей в заместителе в положении 2 и позволяет присоединить хромофор к полимерной цепи путем проведения реакции этерификации между карбоксильной группой в положении 4 хромофора и эпоксидными циклами поли[(метилметакрилат)-со-(глицидилметакрилат)]а.

Как было показано выше, 2-стирилхинолиновые хромофоры были синтезированы по реакции Кневенагеля между 2-метилхинолиновой кислотой и ароматическими альдегидами: бензальдегид, п-оксибензальдегид, N,N-диметиламинобензальдегид, п-бромбензальдегид, п-метоксибензальдегид (анисовый) и 3-фенилпропеновый (коричный) альдегид. Это позволило получить производные хинолина, содержащие достаточно протяженную систему сопряженных связей в заместителях в положении 2, что является необходимым условием для проявления этими соединениями НЛО свойств (таблица 6).

Таблица 6

Определенные экспериментально значения коэффициента генерации второй гармоники ((2) кристаллов хромофоров, рассчитанная теоретически молекулярная гиперполяризуемость отдельных молекул ? и абсорбционные максимумы ? (растворы в ледяной уксусной кислоте)

0,43 5,7*10-30 370

- 8.4*10-30 365

В таблице 6 приведены характеристики синтезировнных хромофоров. Из этих данных видно, что абсорбционные максимумы в хромофорах, в зависимости от их химического строения, располагаются в области 325 – 380 нм. Величины коэффициента молекулярной экстинкции ???изменяются от 16500 до 52000 л/(моль x см), максимальные значения ?? равные 49500 и 52000 л/(моль x см) были получены в случае 2-(4-бромстирил)хинолин-4-карбоновой кислоты и 2-(4-нитростирил)хинолин-4-карбоновой кислоты, соответственно. Как следует из данных таблицы 6, максимальное значение гиперполяризуемости ? соответствует 2-(4-N,N-диметиламиностирил)-хинолин-4-карбоновой кислоте. Это связано с наибольшим изменением дипольного момента молекулы при электронном возбуждении, вследствие наличия в ней сильного донора – диметиламиногруппы и акцептора – цинхонинового фрагмента.

Более слабые электронодонорные заместители окси- и метоксигруппа в стирильном фрагменте хромофора незначительно влияют на расчетную величину ?. Поскольку величины ? отличны от нуля для всех исследованных соединений, отсутствие оцениваемых по значениям ((2) сигналов генерации второй гармоники у Br- и NO2-производных свидетельствует о том, что таковые кристаллизутся в центросимметричных формах, не дающих сигнала по определению.


загрузка...