Полигетероарилены с бензазиновыми группами на основе изатина (25.01.2010)

Автор: Гойхман Михаил Яковлевич

Впервые получены полимеры, содержащие в своей структуре координационно-связанные с лигандами ионы переходных (Cu(I), Ru(II)) и редкоземельных (Tb(III) и Eu(III)) металлов и выявлены основные факторы, влияющие на комплексообразование.

Установлено влияние природы металлических центров, а также архитектуры узлов, образованных комплексами в цепях, на механические, термические, оптические, транспортные и электрохимические свойства металл-полимерных комплексов.

Разработан метод синтеза новых хромофоров ( замещенных стирилхинолиновых карбоновых (цинхониновых) кислот, и впервые осуществлено ковалентное присоединение хромофоров к сополимерам метилметакрилата, содержащим боковые эпоксидные группы; разработан метод ковалентного присоединения глицидиловых эфиров азокрасителей к полимерам с боковыми карбоксильными группами.

Установлена зависимость нелинейных оптических свойств хромофорсодержащих полимеров от строения полимерной цепи (полиамидоимиды, сополиметакрилаты), содержания хромофорных групп и степени их ориентации в поле коронного разряда.

Практическая значимость работы состоит в том, что в ней разработаны методы получения новых теплостойких и гидролитически стабильных хромофорсодержащих полимеров, полимеров-лигандов и металл-полимерных комплексов, сочетающих высокий уровень термических и прочностных характеристик с фотофизическими, электрокаталитическими и транспортными свойствами. Показана перспективность полученных полимеров для их использования в качестве нелинейных оптических сред в лазерных технологиях, светоизлучающих материалов для органических светодиодов, электрокаталитически активных покрытий углеродных электродов в устройствах электрохимического окисления органических соединений, а также при получении материалов для газоразделительных и первапорационных мембран.

Положения, выносимые на защиту:

( Изатин и его производные являются эффективными базовыми соединениями для получения мономеров (бис-антраниловых кислот, 2,2/-бихинолил-4,4/-дикарбоновой киcлоты) и исходных соединений 2-(2-пиридил)-цинхониновой кислоты, 2-стирилхинолиновых кислот) в синтезе полигетероариленов с бензазиновыми группами.

( Использование полимеров с бихинолиловыми, пиридилхинолиновыми и антраниламидными звеньями для синтеза металл-полимерных комплексов с Cu(I), Ru(II), Tb(III) и Eu(III), включая прием молекулярной сборки в случае Ru(II) и Eu(III), позволяет осуществлять направленное регулирование оптических, транспортных и электрокаталитических свойств металл-полимерных комплексов.

( Архитектура координационных центров (узлов) синтезированных металл-полимерных комплексов определяет образование сшитых полимерных систем в случаях комплексов Cu(I) и Tb(III) и линейных полимерных систем в случае комплексов Ru(II) и Eu(III), что в свою очередь оказывает влияние на их деформационно-прочностные, люминесцентные и электрокатали-тические свойства.

( Бихинолиловые звенья в основной цепи полимеров обладают более высокой комплексообразующей активностью по отношению к ионам Tb(III) по сравнению с антраниламидными звеньями. Имидные и бихинолиловые звенья в таких полимерах гасят люминесценцию.

При комплексообразовании ионов Tb(III) с форполимерами бензоксазинонов, полученными на основе хлорангидридов алифатических дикарбоновых кислот, а также ионов Eu(III) с сополимерами винилового ряда, содержащими в качестве лигандов боковые (2-пиридил)-хинолиновые и трис-((-дикетонатные) группы, образуются металл-полимерные комплексы с ярко выраженными люминесцентными свойствами.

( Реакции полимераналогичных превращений со-(полиметилметакрилат)-(полиглицидилметакрилат)ов в присутствии хромофоров стирилхиноли-нового ряда, обладающих протяженной цепью сопряжения и реакционноспособной карбоксильной группой, приводят к получению полимеров с нелинейными оптическими свойствами второго порядка.

( Нелинейные оптические полимеры можно получать на основе полиамидоимидов с карбоксильными боковыми группами, используя азохромофоры, модифицированные эпоксидными группами. Использование глицидилметакрилата в реакции с форполимерами полибензокса-зинонимидов и карбоксилсодержащими полиамидоимидами позволяет получить светочувствительные полимеры, сшивающиеся под действием УФ-облучения.

Апробация работы. Результаты исследований были представлены на следующих российских и международных конференциях: International Symposium ”New Approaches in Polymer Synthesis and Macromolecular Formation” (Saint-Petersburg, Russia, 1999), Второй Всероссийский Каргинский симпозиум “Химия и физика полимеров в начале ХХI века” (Черноголовка, Россия, 2000 г.), X Международная конференция студентов и аспирантов “Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений” (Казань, Россия, 2001), IX Всероссийская конференция “Структура и динамика молекулярных систем” (Уфа, Казань, 2002), Международная конференция “Аморфные и микрокристаллические полупроводники” (Санкт-Петербург, Россия, 2002 г.), 4th, 5th Internetional Symposium “Molecular Order and Mobility in Polymer Systems” (Saint-Petersburg, Russia, 2002, 2005), X Всероссийская конференция “Структура и динамика молекулярных систем” (Казань, Москва, 2003 г.), 10th IUPAC International Symposium on Macromolecule-Metal Complexes (Moscow, 2003), IX Всероссийская конференция “Структура и динамика молекулярных систем” (Уфа-Казань, Россия, 2002 г.), Международная конференция “Аморфные и микрокристаллические полупроводники” (Санкт-Петербург, Россия, 2002 г.), X Всероссийская конференция “Структура и динамика молекулярных систем” (Казань, Москва, 2003 г.), 4th International Youth Conference on Organic Synthesis “Modern Trends in Organic Synthesis and Problems of Chemical Education” (Saint-Petersburg, Russia, 2005), IV Всероссийская Каргинская конференция “Наука о полимерах – 21-му веку” (Москва, 2007), Международная научная конференция “Cовременные тенденции в химии полимеров” (Казахстан, Алматы, 2008 г.).

Личный вклад автора состоял в постановке целей и задач исследования, планировании, подготовке и проведении экспериментов, исследовании свойств полимеров, а также в анализе, обобщении и интерпретации результатов, оформлении публикаций.

Публикации: по теме диссертации опубликовано 26 статей и 32 тезиса докладов, получен один патент РФ.

Структура работы. Диссертационная работа состоит из введения; трех глав, включающих литературные обзоры; выводов; списка литературы (320 наименований) и приложения. Работа изложена на 303 страницах, содержит 21 таблицу, 75 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во ВВЕДЕНИИ обоснована актуальность темы диссертации, сформулированы цели и задачи работы, основные положения, выносимые на защиту, научная новизна и практическая значимость.

ГЛАВА 1. СИНТЕЗ ПОЛИАМИДОИМИДОВ, ПОЛИБЕНЗОКСАЗИНОНОВ, ПОЛИБЕНЗОКСАЗИНОНИМИДОВ И ПОЛИМЕТАКРИЛАТОВ С РЕАКЦИОННОСПОСОБНЫМИ ФУНКЦИОНАЛЬНЫМИ КАРБОКСИЛЬНЫМИ, ЭПОКСИДНЫМИ И БЕНЗПИРИДИНОВЫМИ ГРУППАМИ.

1.1. Синтез исходных соединений и мономеров.

Анализ литературных данных свидетельствует о том, что наиболее эффективным путем химической модификации полимеров является способ, основанный на проведении реакций в полимерных цепях, приводящих к ковалентному или координационному присоединению функциональных групп. В настоящей работе предложен нетривиальный и достаточно эффективный подход, предусматривающий синтез полимеров двух классов – полигетероариленов и сополимеров метакрилового ряда с высокоактивными функциональными группами (форполимеры), которые на последующих стадиях синтеза могут быть использованы для проведения реакций в цепях с целью получения металл-полимерных комплексов и полимеров, обладающих высокой светочувствительностью, фотолюминесцентными, нелинейными оптическими, окислительно-восстановительными и транспортными свойствами. Отличительная особенность полимеров состояла в том, что они были впервые синтезированы при использовании изатина и его производных.

Изатин, как базовое соединение для получения основных мономеров и исходных соединений.

Введение новых полимеров в практику возможно лишь в том случае, если их получение опирается на доступную сырьевую базу и является приемлемым с технологической точки зрения. В качестве базового соединения для получения основных мономеров, предназначающихся для последующего синтеза полимеров с бензазиновыми группами, в настоящей работе было выбрано доступное и хорошо изученное органическое соединение ( изатин (1-Н-индол-2,3-дион или 2,3-диоксобензпиррол) и его производные.

Детальный анализ методов синтеза изатина и его свойств и показал, что из всего многообразия реакций с участием этого соединения для решения поставленных задач можно использовать процессы превращения и расширения азотистого гетероцикла, открывающие путь к получению соединений, выступающих в качестве новых мономеров для поликонденсации (бис-антраниловые кислоты, 2,2/-бихинолил-4,4/-дикарбоновая кислота), лигандов (2-(2-пиридил)-хинолил-4-карбоновая кислота), а также хромофоров стирилхинолилового ряда.

Синтез бис-антраниловых кислот.

При синтезе полигетероариленов широко применяются бис-антраниловые кислоты, в частности, метилен-бис-антраниловая кислота, 5,5/-окси-бис-антраниловая кислота, 5,5/-бис-антраниловая кислота и другие. Для синтеза бис-антраниловых кислот был предложен новый подход с использованием химии изатина, который предотвращал образование смеси изомерных продуктов. При использовании ряда диаминов (4,4/ - диаминодифенилметана, 4,4/ - диаминодифенилового эфира) по реакции Зандмейера был осуществлен синтез бис-изатинов, которые далее были окислены перекисью водорода до бис-антраниловых кислот:

Синтез хинолин-карбоновых кислот и их производных.

Анализ литературы показал, что способность к комплексообразованию бихинолила несколько ограничена (например, по сравнению с бипиридилом), поскольку атомы водорода в положении 8 и 8/ в молекуле бихинолила в некоторых случаях препятствуют комплексообразованию. Однако, несмотря на это бихинолил образует устойчивые комплексы с Cu(I), Ru(III), Ru(II), Os(III), Rh(III), Pt(III), Co(II) и др. Имеется обширная литература, посвященная методам синтеза мономеров для поликонденсации, содержащих звенья 2,2/-бипиридила и 2,2/-бихинолила. Наиболее целесообразным методом для получения бифункциональных бихинолилсодержащих мономеров признан синтез 2,2/-бихинолил-4,4/-дикарбоновых кислот из изатина или его производных.

Синтез 2,2/-бихинолил-4,4/-дикарбоновой кислоты.

Используемая при синтезе целевых полимеров 2,2/-бихинолил-4,4/-дикарбоновая кислота была получена по реакции Пфитцингера из изатина и ацетоина (2-окси-бутанона-3):

Синтез 1-метакрилоил-2-(2-пиридил-4-карбоксихинолил) гидразина.

Немногочисленность данных о получении полимеров с боковыми пиридил-хинолиловыми группами обусловлена трудностями синтеза пиридил-хинолиловых мономеров, используемых в процессах свободно-радикальной полимеризации. Для решения этой задачи были привлечены данные о свойствах изатина. Мономер – 1-метакрилоил-2-(2-пиридил-4-карбоксихинолил) гидразин – был получен из изатина и 2-ацетилпиридина по реакции Пфитцингера через стадию синтеза низкомолекулярного лиганда, 2-(2-пиридил)-хинолин-4-карбоновой кислоты. Синтез осуществлен в четыре стадии: получение 2-(2-пиридил)-хинолин-4-карбоновой кислоты (I); получение этилового эфира 2-(2-пиридил)-хинолин-4-карбоновой кислоты (II); получение гидразида (III); получение 1-метакрилоил-2-(2-пиридил-4-карбоксихинолил) гидразина (IV):

Синтез 2-стирилхинолин-4-карбоновой кислоты и ее производных.

Перспективными соединениями-хромофорами являются производные 2-стирилхинолин-4-карбоновой кислоты, структура которой дает возможность для удлинения системы сопряженных связей в заместителе в положении 2 и позволяет присоединить хромофор к полимерной цепи путем проведения реакции этерификации между карбоксильной группой в положении 4 хромофора и эпоксидными циклами поли[(метилметакрилат)-со-(глицидилметакрилат)]а. Производные 2-стирилхинолиновой кислоты были синтезированы с использованием химии изатина с помощью реакции Пфитцингера. При взаимодействии изатина с ацетоном в сильнощелочной среде идет образование 2-метилхинолин-4-карбоновой (2- метилцинхониновой кислоты):

Метильная группа в положении 2 в этом соединении способна участвовать во многих химический реакциях, в том числе с ароматическими альдегидами по реакции Кневенагеля. В синтезе хинолиновых красителей использовались следующие ароматические альдегиды: бензальдегид, п-оксибензальдегид, N,N-диметиламинобензальдегид, п-бромбензальдегид, п-метоксибензальдегид (анисовый) и 3-фенилпропеновый (коричный) альдегид. При этом были получены производные хинолина, содержащие, помимо карбоксильной группы в положении 4, достаточно протяженную систему сопряженных связей в заместителях в положении 2, что необходимо для проявления этими производными нелинейных оптических свойств. Синтез проводился по схеме:

1.2. Синтез полимеров.

Дизайн полимеров с реакционноспособными группами для осуществления реакций в цепях с образованием ковалентных или координационных связей.

Анализ литературы, посвященный основным принципам дизайна полимеров с реакционноспособными группами для осуществления реакций в цепях с образованием координационных связей, показал перспективность введения бихинолиловых звеньев в основные цепи поликонденсационных полимеров и (2-пиридил)-хинолиновых звеньев в боковые цепи сополимеров винилового ряда с целью получения металл-полимерных комплексов. C учетом хорошо изученного взаимодействия между эпоксидными и карбоксильными группами, эта реакция использовалась для ковалентного присоединения синтезированных в работе стирилхинолиновых хромофоров.

В настоящей работе были синтезированы полиамидоимиды, содержащие боковые карбоксильные группы; форполимеры полибензоксазинонов, полибензоксазиноимидов, содержащих антранил-амидные и/или бихинолиловые лиганды, со-(полиметилметакрилат)-(полиглицидилметакрилат), и (со-поли(N-винилкарбазол)-(метакрилоил)-2-(2-фенил-4-карбоксихинолил) гидразин), содержащий (2-пиридил) - хинолиновые лиганды.


загрузка...