Биологическая активность гуминового комплекса различного происхождения и его влияние на рост и развитие растений (23.08.2010)

Автор: Юшкова Елена Ильинична

Анализ микробиологических свойств вермикомпоста показал, что это – продукт с достаточно стабильным микробным сообществом. При естественной влажности (около 74%) он характеризуется определенной пропорцией микробной биомассы: 63-71% - грибной мицелий; 21-28% - споры грибов и дрожжеподобные организмы; 5,6-6,7% - бактерии; 2,3-3,2% - мицелий актиномицетов. В отличие от исходного субстрата в вермикомпосте снижается доля грибного мицелия, но возрастает доля функционально-активного мицелия актиномицетов; в группе бактерий доминируют представители актиномицетной линии; среди грибов преобладают активные целлюлозоразрушающие виды, которые не токсичны и не патогенны для растений, а напротив, обладают антагонистическим эффектом по отношению к фитопатогенным микроорганизмам.

Исследование почвенной микрофлоры образцов биогумуса показало (табл. 2), что аммонифицирующая активность значительно повышается по сравнению с компостом в 2,6 и 1,8 раз соответственно, а нитрифицирующая активность снижается (от 19,2 мг в компосте до 17,8 и 17,6 – в биогумусе).

Таблица 2

Аммонифицирующая и нитрифицирующая

активность биогумуса

Образец

Аммонифицирующая активность N-NH4+ мг/100г образца (при компостировании с люпиновой мукой) Нитрифицирующая активность N-NО3- мг/100г образца (при компостировании с сульфатом аммония)

Компост 5,6 19,2

Биогумус, зимний 14,5 17,8

Биогумус, летний 10,0 17,6

Установлено, что все образцы обладают высокой целлюлозоразрушающей активностью, что положительно сказывается на закреплении азота в органической биомассе целлюлозорарушающих микроорганизмов.

Исследование по выделению и идентификации грибковых сообществ в компосте и вермикомпосте показали, что в компосте доминируют грибы родов Mucor, Fusarium, Penicilium и Trichoderma. Общее количество почвенных грибов составляло до 60 тыс/г образца, количество колоний рода Fusarium составляло 9 - 11 тыс/г образца, что составляет 15 - 18% от общего количества (рис. 1 (а)).

а) б) в)

Рисунок 1. Состав грибной микрофлоры в компосте (а), биогумусе зимнем (б), биогумусе летнем (в)

По мере компостирования биогумуса доминирующее положение занимают грибы pода Trichoderma, вытесняя другие виды, в том числе и представителей патогенного рода Fusarium (рис. 1 (б, в)). В последнем образце насчитывалось 3 - 5 тыс/г образца представителей сапрофитной микрофлоры – грибов рода Penicilium, остальное приходилось на колонии pода Trichoderma. Биогумус по мере созревания обогащается грибами - антагонистами (Trichoderma) и тем самым приобретает свойства оздоравливающего действия.

Знание микробиологических свойств и их связи с полезными и вредными свойствами вермикомпоста необходимы для контроля производства и получения высококачественных продуктов. Методы, основанные на определении видового состава сообщества компоста, эффективны для выявления фитопатогенной микрофлоры и санитарных микроорганизмов. Характеристики такого типа необходимы для определения гигиенических качеств вермикомпостов. Кроме того, изменение функциональной структуры микробиологических сообществ может быть приемлемым для определения степени зрелости вермикомпостов.

Экстракцию водорастворимых веществ компостов и вермикомпостов проводили 0,1 М фосфатным буфером при рН = 7,6. Показано (рис. 2) , что из субстрата, не обработанного червями максимально экстрагируется 4 мг/мл вещества, в то время как из образца, полученного с января по апрель (зимний), экстрагируется 1,6 мг/мл, а из образца, полученного в период с апреля по октябрь (летний) – 1,2 мг/мл.

а) б)

Рисунок 2. Динамика экстрагируемости водорастворимых веществ (экстракция 0,1 M фосфатным буфером; pH 7,6) - а) из компоста; б) из вермикомпоста: 1 - зимний образец вермикомпоста, 2 - летний образец вермикомпоста.

Из выше приведенных данных следует, что не менее половины (4/1,6 = 2,5; 4/1,2 = 3,5) водорастворимых веществ после обработки образцов червями, по-видимому, гумифицируется. Следует также отметить, что оставшиеся после обработки компоста червями органические вещества быстрее вымываются водой (3 ч), в сравнении с контролем (16 ч).

Экстракты компоста и вермикомпостов были исследованы методом гель-хроматографии. При существующей неопределенности структуры ГВ возможность создания универсальных ММ стандартов на сегодняшний день практически исключена. В этой ситуации представляется целесообразным оценить эффективность гель-хроматограммы приняв во внимание распределение в хроматографическом профиле отдельных фракций, различающихся по физико-химическим свойствам. Площади, занимаемые максимумами, пропорциональны количественному содержанию фракций.

На рисунках 3(а) и 3(б) приведены гель – хроматограммы для экстрактов зимнего и летнего образцов вермикомпостов. Хроматограммы содержат по одному пику с одинаковым временем удерживания на колонке, что свидетельствует о близких молекулярных массах веществ, содержащихся в образцах. Асимметрия пиков указывает на присутствие двух или нескольких веществ с близкой молекулярной массой.

а) б)

Рисунок 3. Гель - хроматограмма водного экстракта биогумуса: а) образец - зимний, б) образец – летний; детектирование-254 нм.

На рисунке 4 приведена гель - хроматограмма для образца компоста, не обработанного червями – контроль.

Рисунок 4. Гель - хроматограмма водного экстракта компоста контрольного образца, детектирование – 254 нм.

Приведенная хроматограмма содержит, помимо основного пика, дополнительный пик-1, соответствующий большей молекулярной массе вещества. Этот факт говорит о том, что возможна ассоциация молекул гумусовых кислот и образование в растворе статических клубков. При различных значениях рН конформация молекул может изменяться вследствие электростатического отталкивания ионизированных карбоксильных групп, приводя к увеличению линейных размеров молекул.

Увеличение доли высокомолекулярной фракции в экстрактах вермикомпостов объясняется, вероятно, тем, что при участии червей меняется природа гумусового вещества, происходит обогащение новообразованными гуминовыми кислотами, возникающими за счет преобразования растительных остатков. Кроме того, усиливается микробиологическая активность, что в свою очередь приводит к усилению процессов гумификации и образованию более зрелых биотермодинамически устойчивых ГК, имеющих большую молекулярную массу и обеспечивающих повышение плодородия почв.

Методом гель-фильтрации определены молекулярные массы белков

биогумуса. Молекулярная масса белка из биогумуса вычислена по нижеследующему уравнению:

Y = - 0,3829х + 2,083 исходя из К = 0,65 для белка из биогумуса. Она равна (27 кДа.

Для определения жирных кислот в препаратах экстрактов биогумуса и компоста использовали метод газожидкостной хроматографии с масс-спектрометрическим детектором. В таблице 3 приведены данные жирнокислотного состава в исследованных препаратах.

Таблица 3

Содержание жирных кислот в биогумусе

№ п./п. Название вещества

летний зимний контроль

Содержание в гумусе, нг/г

1 Октадекановая 500 370 200

2 Метилэйказоновая 15 10 5

3 Доказоновая 300 250 150


загрузка...