Создание комплексной технологии улучшения внутреннего строения непрерывнолитого сляба из низколегированных сталей (22.03.2010)

Автор: Исаев Олег Борисович

Работа выполнялась на основе теоретических, лабораторных исследований и натурных испытаний. Методами математического и физического моделирования исследовали гидродинамические процессы, происходящие в ПК и кристаллизаторе МНЛЗ, процессы охлаждения и затвердевания слитка в кристаллизаторе и зоне вторичного охлаждения (ЗВО). Работа выполнена с применением методов ввода радиоактивных изотопов в кристаллизатор МНЛЗ, изучения температурного поля в жидкой лунке кристаллизатора с помощью малоинерционных термопар, скоростей кристаллизации по плотности дендритной структуры, металлографической оценки макро- и микроструктуры, атомно-эмиссионного спектрального анализа, Оже-спектроскопии, рентгеноструктурного анализа включений, проведения полномасштабного промышленного опробования разработанных технологических решений и конструкций.

Научная новизна:

1. Впервые выявлены закономерности влияния макрохолодильников в виде стальной ленты на процессы затвердевания и кристаллизации непрерывнолитой заготовки такие как:

– параметры плавления макрохолодильника в зависимости от температуры перегрева стали над температурой ликвидуса, химического состава и толщины ленты, скорости ее подачи в расплав;

– условия полного расплавления ленты и условия вмораживания ленты в матричный расплав;

– воздействие макрохолодильников на скорость кристаллизации, динамику изменения соотношения структурных кристаллических зон, развитие осевой ликвации химических элементов, образование внутренних трещин в слябе.

2. Впервые разработана комплексная система рафинирования стали в промежуточном ковше, предусматривающая:

– месторасположение, геометрические параметры перегородок и конфигурацию фильтрационных элементов, позволяющие в максимальной степени рафинировать сталь от НВ размером более 20...30 мкм;

– разработку донных канальных фурм для удаления из металла НВ размером менее 30 мкм;

– разработку «гасителей» турбулентности струи с предотвращением попадания неметаллических включений в непрерывнолитой сляб при нестационарных режимах разливки стали;

3. Определены количественные зависимости структурночувствительных характеристик толстолистового проката от содержания водорода в жидкой стали.

4. Установлены закономерности влияния углерода в сталях трубного сортамента на формирование осевой ликвации основных и примесных химических элементов, обуславливающих развитие центральной химической и структурной неоднородности непрерывнолитых слябов и полученных из них листов.

5. Установлены и научно обоснованы пороговые значения содержания примесей цветных металлов (свинца, олова, цинка, сурьмы и висмута), оказывающих воздействие на развитие внутреннего трещинообразования в непрерывнолитых слябах.

Практическая ценность диссертационной работы заключается в создании на основе полученных научных результатов многостадийной технологии улучшения внутреннего строения непрерывнолитых слябов из низколегированных сталей ответственного назначения. На основании проведенных исследований гидродина-мических и тепловых процессов при непрерывной разливке, затвердевания слябовой заготовки получены следующие практические результаты:

Разработана и внедрена технология внешних воздействий на непрерывнолитой сляб путем ввода макрохолодильников в кристаллизатор МНЛЗ, позволяющая практически ликвидировать осевую химическую неоднородность стали и минимизировать образование и развитие внутренних трещин.

Разработана и внедрена в производство комплексная система рафинирования стали, состоящая из фильтрационных перегородок, донных канальных фурм для продувки стали аргоном, «гасителей» турбулентности струи, с применением теплоизолирующей и шлакорафинирующей смесей, позволяющая в максимальной степени очистить сталь от НВ.

Создана технология замедленного охлаждения непрерывнолитых слябов, обеспечивающая необходимый уровень качества толстолистового проката при различном исходном содержании водорода в расплаве.

Разработаны технологические приемы, позволяющие исключить или существенно снизить влияние примесей цветных металлов на формирование дефектов внутреннего строения литого и катаного металла: снижение содержания углерода в стали, замедленное охлаждение слябов, внепечная обработка жидкого металла порошковой проволокой с наполнителями, включающими редкоземельные элементы.

Содержание диссертационной работы представляет собой решение важной научно-технической и народно-хозяйственной проблемы улучшения качества непрерывнолитых слябов ответственного назначения путем совершенствования технологического процесса непрерывной разливки стали и оптимизации химического состава жидкого металла. Разработанные технологические решения универсальны и могут быть применены для слябовых МНЛЗ других металлургических предприятий.

Апробация работы. Материалы диссертационной работы обсуждены и доложены на 15 международных и региональных научно-технических конференциях:

«Технический прогресс в производстве и эксплуатации труб для нефтяной и газовой промышленности» (Волжский, 1999); V Международный конгресс сталеплавильщиков (Рыбница, 1998); VI Международный конгресс сталеплавильщиков (Череповец, 2000); VII Международный конгресс сталеплавильщиков (Магнитогорск, 2002); «Современные технологии и оборудование для внепечной обработки и непрерывной разливки стали» (Москва, 2005, 2006); «Состояние и основные пути развития непрерывной разливки стали на металлургических предприятиях Украины» (Харьков, 2001); 3-я Международная научно-практическая конференция «Прогрессивные технологии в металлургии стали» (Донецк, 2007); Международная конференция, посвященная 100-летию со дня рождения В.И.Баптизманского (Днепропетровск, 2008); 3rd European Conference on Continuous Casting (Madrid, Spain, 1998); 4th European Continuous Casting Conference (Birmingham, UK, 2002); 8th International Conference “Line Pipe Steels” (Belgium, 2004); 2nd International Сonference “Segregation and Precipitation” (Koshice, Slovakia, 2006).

Публикации. Основное содержание диссертации отражено в двух книгах и 23 статьях, опубликованных в рецензируемых научных журналах, рекомендованных ВАК, а также в 60 публикациях в других журналах и сборниках, 14 патентах.

Личный вклад автора. Основные научные результаты диссертационной работы базируются на исследованиях, выполненных под руководством или с непосредственным участием автора. В работах, выполненных в соавторстве, личный вклад автора состоит в постановке задач исследования, выработке направлений и методов решения технологических проблем, непосредственном участии в получении экспериментальных данных и обобщении полученных результатов. Освоение и внедрение в производство разработанных технологий осуществлялось при непосредственном участии автора.

Структура и объем диссертации. Диссертация состоит из введения, 6 глав, общих выводов, списка литературных источников из 325 наименований, приложений, содержит 374 страницы машинописного текста, 146 рисунков, 64 таблицы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении показана актуальность темы диссертации, отмечены особенности развития процессов непрерывной разливки стали в мире, сформулированы цель, задачи и методы исследования, научные результаты и практическая ценность работы, приведены данные по апробации и публикации результатов работы.

В первой главе «Методы повышения качества внутреннего строения непрерывнолитых слябов из стали низколегированных марок» проведен аналитический обзор работ по основным направлениям совершенствования технологии непрерывной разливки стали, направленным на улучшение внутреннего строения непрерывнолитой слябовой заготовки. Отмечено, что к качеству непрерывнолитых слябов, из которых прокатывают толстый лист для производства металлопродукции особо ответственного назначения, предъявляются весьма высокие требования по содержанию серы, фосфора, примесей цветных металлов, растворенных газов (кислорода, азота, водорода); количеству, составу и расположению неметаллических включений; степени развития химической и структурной неоднородности; отсутствию внутренних трещин.

Для обеспечения высокой чистоты стали необходимо предусматривать ряд специальных мероприятий, препятствующих развитию процессов насыщения стали НВ: защита металла от вторичного окисления на участках «сталеразливочный ковш – ПК» и «ПК – кристаллизатор»; защита зеркала металла в ПК и кристаллизаторе; рафинирование и модифицирование металла в ПК; совершенствование конструкции погружаемого стакана; совершенствование системы распределения гидродинамических потоков стали в ПК и кристаллизаторе; конструктивное оформление кристаллизатора и ряд других.

Показано, что в отличие от начального периода распространения процессов непрерывной разливки стали когда ПК играл роль распределительного устройства, обеспечивающего определенный запас и постоянство напора металла, поступающего в кристаллизаторы МНЛЗ, в последние годы ПК превратился в металлургический агрегат непрерывного действия, предназначенный для дополнительного внепечного рафинирования стали и повышения ее качества. Для эффективного рафинирования металла в объеме ПК необходимо спроектировать его оптимальную конструкцию и оснастить специальной фурнитурой: перфорированными или фильтрационными перегородками и/или порогами, системой «турбостоп», плазменным нагревом, продувочными устройствами нейтральными газами, гасителями турбулентности, подобрать тип футеровки, химический и гранулометрический состав теплоизолирующих и рафинирующих смесей и т.д.

Проведено сравнение эффективности удаления НВ на МНЛЗ различного типа – криволинейных, криволинейных с вертикальным участком, вертикальных. Применение системы электромагнитного торможения для обеспечения оптимального потока жидкой стали в кристаллизаторе при разливке слябов больших сечений – задача сложная, требующая дальнейшего совершенствования процесса. Электромагнитное перемешивание (ЭМП) является одним из наиболее широко применяемых методов, позволяющих эффективно воздействовать на макроструктуру слитка. ЭМП используют для решения двух задач: улучшение внутреннего строения заготовки – измельчения структуры, снижение степени осевой или центральной ликвации, уменьшение центральной пористости и повышение качества поверхности и подповерхностной зоны непрерывнолитой заготовки – снижение количества поверхностных дефектов и НВ; повышение плотности наружной корочки слитка. Еще одно направление – мягкое обжатие непрерывнолитой заготовки в ручье МНЛЗ. При использовании этого метода необходимо точное определение места приложения усилия обжатия (соотношение между количеством жидкой и твердой фаз в момент обжатия), закона приложения обжатия, способа приложения усилия к поверхности заготовки. Максимальный эффект подавления осевой ликвации достигается при минимальном колебании технологических параметров разливки, что возможно при тщательном контроле всего технологического цикла производства стали и комплексной автоматизации и компьютеризации процессов.

На основании изученного материала и проведенного анализа методов повышения качества внутреннего строения непрерывнолитой заготовки была определена основная задача исследования: разработка и внедрение технологии непрерывной разливки стали, предусматривающей комплексное улучшение качества сляба по всем основным внутренним дефектам литой заготовки – центральной сегрегационной и структурной неоднородности, внутренним трещинам, содержанию НВ.

Во второй главе «Изучение внутреннего строения непрерывнолитой заготовки и разработка методов его улучшения» приведено описание внутренних дефектов непрерывнолитого сляба и главные причины их образования. Подробно изложены методы изучения макроструктуры непрерывнолитого сляба – получение серных отпечатков и травление макротемплетов в растворах различных кислот. Рассмотрены преимущества и недостатки каждого из методов. Выбор метода травления зависит от задач, стоящих перед исследователем. В случае необходимости определения степени развития осевой и/или точечной сегрегации, выявления внутренних трещин целесообразно применять «холодное» травление в 10%-ном водном растворе персульфата аммония. Для более глубокого исследования кристаллической структуры металла, выявления размера кристаллов и степени развития дендритной структуры, расчета скорости кристаллизации по дендритной структуре предпочтительнее использовать «горячее» травление в 50%-ном водном растворе соляной кислоты.

В процессе изучения макроструктуры непрерывнолитых слябов был разработан собственный классификатор, в котором с одной стороны учтена простота и наглядность сравнения с эталоном характерная для шкал фирмы Mannesmann, с другой – ранжир развития дефектности структуры установлен в пределах 0,5 балла, что значительно точнее учитывает степень развития дефекта структуры. Для травления используется 50%-ный водный раствор соляной кислоты или 10%-ный водный раствор персульфата аммония.

Одним из путей совершенствования низколегированных сталей повышенной прочности является снижение содержания в них массовой доли углерода.

В исследовании рассматривали влияние углерода на центральную химическую и структурную неоднородность в непрерывнолитых слябах и листах из низколегированных трубных сталей с содержанием углерода от 0,03 до 0,19%. Объективно оценить влияние содержания углерода (или какого-либо иного фактора) на склонность к сегрегации химических элементов можно с помощью коэффициента сегрегации, определяемого как отношение содержания элемента в осевой зоне сляба к его плавочному содержанию в ковшовой пробе. На рис. 1 показана полученная в результате определения содержания химических элементов, зависимость коэффициентов сегрегации от массовой доли углерода в стали.

Наибольшую склонность к сегрегации в центральной зоне сляба проявляют сера и фосфор. Так, если при содержании углерода равном 0,08% коэффициент сегрегации серы равнялся 1,5, то при содержании углерода до 0,19% он равнялся сегрегации 3,2.

Рис. 1. Зависимость коэффициентов сегрегации химических элементов от содержания углерода в стали

Установлено, что с понижением содержания углерода в исследованных пределах (от 0,19 до 0,03%) коэффициент сегрегационной структурной неоднородности листового проката снижается от 1,79 до 1,06, что свидетельствует о существенном росте однородности структуры металла по толщине раската. С учетом того, что диффузионная подвижность атомов углерода и примесей в (-феррите существенно превышает скорость их диффузии в аустените, увеличение продолжительности пребывания металла в области (-феррита приводит к гомогенному перераспределению атомов примесей из зон их сегрегации. При увеличении содержания углерода в стали увеличивается длительность существования двухфазной зоны. С увеличением содержания углерода увеличивается время пребывания расплава в двухфазном состоянии, что способствует более полному протеканию разделительной диффузии ликвирующих элементов и развитию зональной неоднородности, т.е. осевой сегрегации элементов.

Отмечена тенденция увеличения количества внутренних трещин и степени их развития с увеличением содержания углерода в пределах от 0,06 до 0,20%. Затвердевание стали при содержании углерода более 0,10% происходит одновременно с фазовым переходом. Напряжения усадки, возникающие в слитке в процессе затвердевания, суммируются с напряжениями фазового перехода, что служит одним из основных источников возникновения микротрещин в междендритном пространстве.

Для изготовления электросварных газопроводных труб из стали категории прочности К52 до сих пор часто применяют марганцовистые стали с содержанием углерода свыше 0,12%. К основным недостаткам данных сталей можно отнести сравнительно невысокий уровень механических и технологических характеристик металла. На практике улучшение механических показателей проката и снижение трещиночувствительности низколегированной стали на стадии сталеплавильного передела можно достичь за счет снижения массовой доли углерода и рационального микролегирования добавками микролегирующих элементов. В рамках решения этой задачи на основании лабораторных и промышленных исследований была разработана новая малоуглеродистая сталь химического состава: 0,06…0,09% С, 1,25…1,50% Mn, 0,20…0,35% Si, 0,02…0,035% Nb, 0,015…0,035% Ti, 0,02…0,05% Al, не более 0,008% S, 0,020% P, 0,009% N; CЕ ( 0,36; РСМ ( 0,20.


загрузка...