Кодирование признаков изображения и сложных зрительных образов нейронами коры головного мозга млекопитающих (21.03.2011)

Автор: Бондарь Игорь Вечеславович

Игорь Вечеславович БОНДАРЬ

КОДИРОВАНИЕ ПРИЗНАКОВ ИЗОБРАЖЕНИЯ И СЛОЖНЫХ ЗРИТЕЛЬНЫХ ОБРАЗОВ НЕЙРОНАМИ КОРЫ ГОЛОВНОГО МОЗГА МЛЕКОПИТАЮЩИХ

Автореферат

диссертации на соискание ученой степени

доктора биологических наук

03.03.01 - Физиология

Москва

Работа выполнена в лаборатории физиологии сенсорных систем

(и.о. заб. лаб. доктор биологических наук Елена Семеновна Михайлова) Учреждения Российской академии наук Института высшей нервной деятельности и нейрофизиологии РАН

(директор – доктор биологических наук, профессор Павел Милославович Балабан)

Научный консультант: Академик РАН, доктор биологических наук

Игорь Александрович ШЕВЕЛЁВ

Официальные оппоненты: Доктор биологических наук

Галина Христофоровна МЕРЖАНОВА

Доктор биологических наук, профессор

Александр Васильевич ЛАТАНОВ

Доктор биологических наук, профессор

Александр Яковлевич СУПИН

Ведущая организация: Учреждение Российской академии наук

Институт физиологии им. И.П. Павлова РАН

Защита состоится 2011 года в 14:00 часов на заседании Диссертационного совета

Д-002.044.01 по защите докторских диссертаций при Учреждении Российской академии наук Институте высшей нервной деятельности и нейрофизиологии РАН по адресу:

117485, Москва, ул. Бутлерова, д. 5а.

С диссертацией можно ознакомиться в библиотеке Института высшей нервной деятельности и нейрофизиологии РАН

Автореферат разослан « ___ » ______________ 2010 года

Ученый секретарь Диссертационного совета

доктор биологических наук, профессор В.В. Раевский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Обработка зрительной информации представляет собой сложный иерархически организованный процесс, цели которого – категоризация, классификация и выявление биологической значимости объектов окружающей среды. Основной единицей, занятой в анализе характеристических признаков зрительных объектов, является нейрон-детектор. Детекторный принцип работы мозга был сформулирован после того, как в 1959 г. МакКаллок и Питс с коллегами в сетчатке лягушки обнаружили нейроны, тонко настроенные на параметры сложных зрительных образов: размер, скорость движения, контраст и т.д. Позднее подобного рода клетки-детекторы были найдены на разных уровнях корковой системы анализа зрительной информации: детекторы ориентации линий в первичной зрительной коре кошки (Hubel & Wiesel, 1962); детекторы пересечений и ветвлений линий в стриарной коре кошки (Шевелев, 1993); нейроны-детекторы лиц в нижневисочной коре мозга макаки резус (Gross, 1972). Теоретические и практические исследования в области детекторной модели кодирования сенсорного сигнала были проведены Е. Н. Соколовым (Соколов, 1995).

Изучение свойств нейронов-детекторов тесно связано с теоретическими работами в области моделирования зрительной системы. Еще в 1982 Марр сформулировал формальные принципы, которые следует принимать в расчет при создании искусственных систем распознавания зрительных образов. Тем не менее, всеобъемлющая теория работы зрительного анализатора до сих пор не создана, а компьютерные системы распознавания образов показали свою функциональность лишь при определенных условиях зрительной среды. Именно поэтому так важны работы по изучению детекторных свойств нейронов, которые смогут объяснить принципы обработки информации в мозге животных. Понимание механизмов, лежащих в основе работы зрительного анализатора, позволит создать интеллектуальные системы распознавания зрительных образов, способные облегчить работу операторов как в сфере обеспечения безопасности жизнедеятельности, так и в разнообразных областях промышленности.

В процессе работы зрительный анализатор сталкивается и успешно решает проблемы, которые вызывают серьезные затруднения при создании искусственных систем распознавания зрительных образов. Так, даже незначительные вариации условий освещения зрительных объектов или изменение их размеров оказывают значительный негативный эффект на успешность распознавания объектов искусственным зрительным анализатором. В связи с этим крайне актуальны исследовательские работы, направленные на детальное изучение свойств нейронов-детекторов. Высокая эффективность нейронов-детекторов связана с их уникальной адаптивной способностью. При этом нервные клетки мозга могут не только приспосабливаться к быстро изменяющимся условиям среды, но и подстраиваться к особенностям зрительного окружения, с которым приходится длительное время контактировать живому организму. Другой важной отличительной чертой детекторов является их способность стабильно кодировать информацию о характеристических признаках изображения и зрительных объектах. И, наконец, однозначность кодирования обеспечивает высокую точность представления информации в мозге. Исследования последних лет значительно обогатили знания о принципах кодирования информации в зрительном анализаторе человека и животных. Тем не менее, изучение адаптивности, стабильности и однозначности кодирования занимают главенствующее положение в работе ведущих мировых лабораторий.

По существующим на настоящий момент представлениям процесс распознавания сложных зрительных объектов можно условно разбить на несколько стадий: выделение фигуры из фона – определение характеристических признаков – связывание отдельных характеристик в единое внутреннее представление – сопоставление с хранящейся в памяти информацией – категоризация. Таким образом, успешное распознавание зрительного образа не заканчивается созданием его внутренней копии, лишь категоризация и выявление биологической значимости объекта логически завершают этот процесс.

Так, было показано, что информация о зрительном образе уже на уровне сетчатки и далее в первичной зрительной коре разделяется на два основных потока, каждый из которых заканчивается в определенных структурах головного мозга (Waessle & Boycott, 1991). Дорзальный путь, закачивающийся в теменных отделах коры больших полушарий, участвует в анализе информации о зрительном пространстве и перемещениях объектов в нем, тогда как включенные в вентральный путь нейронные структуры принимают участие в обработке информации, идентифицирующей зрительные образы. На вершине иерархии вентрального пути находятся области передней нижневисочной коры (Ungerleider & Mishkin, 1982). Именно здесь были обнаружены нейроны, селективно реагирующие на появление в поле зрения сложным образом организованных зрительных стимулов, таких как лица человека или обезьяны (Gross, 1972).

Способность к анализу информации о лицах является одной из самых интригующих функциональных особенностей мозга приматов. В процессе эволюции у приматов сформировалась высокоразвитая мимическая мускулатура, которая играет важную роль в обеспечении социальных взаимооотношений у этих животных, ведущих групповой образ жизни. Поэтому в ходе эволюции в мозге приматов возникли специализированные структуры, анализирующие информацию о лицах и их эмоциональных выражениях (Perrett et al., 1992). С помощью методов функциональной магнитно-резонансной томографии удалось локализовать такие структуры как в мозге человека (Kanwisher, 1997; Tsao et al., 2008), так и обезьян (Logothetis et al., 1999; Tsao et al., 2006), а детальные микроэлектродные исследования позволили выявить специфические свойства нейронов-детекторов лиц (Freiwald et al., 2009). Эти нейроны обладают большими рецептивными полями, что дает им возможность анализировать информацию с протяженных участков поля зрения (Gross, 1972). Детекторы обладают свойством инвариантности: изменения параметров освещения зрительных объектов или их размеров не оказывают значительного влияния на их активность (Vogels & Orban, 1996; Vogels & Biederman, 2002). Существует точка зрения, что кодирование информации о сложных зрительных образах происходит не только с помощью увеличения частоты импульсации, но и за счет временных модуляций нейронного разряда (Richmond et al. 1987; Richmond & Optican, 1987; Sugase et al, 1999). Система распознавания таких сложных зрительных стимулов как лица является, по крайней мере частично, врожденной: нейроны-детекторы лиц были обнаружены даже у новорожденных детенышей макак (Rodman, 1991).

В последнее время появился ряд психофизических работ, которые демонстрируют важную роль прототипа или так называемого «усредненного лица» в организации системы распознавания лиц (Leopold et al., 2001). Предполагается, что узнавание индивидуальных лиц происходит путем сравнения их с прототипом, который формируется у субъекта в результате накопления и обработки информации о лицах в процессе жизни. Принцип кодирования информации о сложных зрительных образах, в основе которого лежит сравнение с прототипом, считается универсальным принципом, который широко ипользуется в мозге для формирования внутреннего представления объектов и событий в окружающей среде (Edelman, 1999). В связи с этим особый интерес приобретает исследование роли нейронов-детекторов в кодировании информации о прототипе и индивидуальных лицах.

Исследование сложных свойств нейронов-детекторов предъявляет особые требования к методикам, используемым в таких экспериментах. Перспективным может быть как использование функционального картирования больших популяций нейронов, так и применение электрофизиологических подходов, с помощью которых возможна стабильная одновременная регистрация нескольких отдельных нейронов. Дело в том, что к настоящему моменту получено значительное количество данных, подверждающих гипотезу о кодировании сложных признаков нейрональными ансамблями (Georgopoulos et al., 1986; Nicolelis et al., 1995; Deadwyler & Hampson, 1997). Регистрация популяционного ответа с помощью визуализирующих работу мозга методик, а также одновременное отведение активности нескольких отдельных нейронов позволяет получить ценную информацию о кооперативной работе клеток мозга, направленной на решение определенных сенсорных задач. Особенно важным представляется использование методик, позволяющих наблюдать за активностью идентифицированного нейрона в течение длительного времени. Хронические имплантации микроэлектродов делают возможными такие долговременные наблюдения за активностью (а также ее изменениями) одной и той же клетки. Речь идет о регистрациях активности, которые отставлены друг от друга не только на несколько часов, но и на дни, недели или даже месяцы. Увеличение количества регистрирующих электродов в хроническом эксперименте позволяет получить уникальные данные по сочетанной работе отдельных клеток в составе нейронных ансамблей. В настоящее время развитие экспериментальных технологий позволяет вплотную приблизиться к созданию таких методик (Porada, 2000).

Цели исследования

Целью настоящей работы является детальное изучение принципов, лежащих в основе представления информации о характеристических признаках изображения и сложных зрительных объектах: адаптивности, стабильности и однозначности кодирования.

Задачи работы


загрузка...