Основы обеспечение безопасности сельских нестационарных электроустановок (20.09.2010)

Автор: Еремина Тамара Владимировна

- «Плана мероприятий по обеспечению безопасности электроустановок в городах и районах Алтайского края на 2004-2008 годы»;

- Краевой целевой программы «Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера в Алтайском крае на 2005-2010 годы»;

- Решения Главного управления государственной противопожарной службы МВД России и Главгосэнергонадзора России от 30.07.1998 г. «О проведении широкомасштабного эксперимента по применению УЗО для предотвращения пожаров от электроустановок и электротравматизма населения».

В соответствии с Разделом 4.1.4 «Освоение и сопровождение производства устройств защитного отключения» ФЦП «Пожарная безопасность и социальная защита на 1995-1997 гг. и до 2000 г.» было налажено промышленное производства УЗО различных модификаций на ОАО «Барнаульский геофизический завод», ОАО «Дивногорский завод низковольтной аппаратуры» и ОАО «Красноярский радиозавод «Искра» общим объемом до 100 тыс. шт. в год.

Проведение исследовательских и опытно-конструкторских работ для подготовки промышленного производства осуществлялось на Алтайском электромеханическом заводе «Ротор», Барнаульском радиозаводе, Опытно-конструкторском бюро автоматики, Бийском заводе «Спецавтоматика» в период с 1982 по 2000 гг.

Разработанные «Методические рекомендации по проведению анализа риска электроустановок зданий и сооружений» одобрены Южно-Сибирским управлением Ростехнадзора и Главным управлением МЧС по Алтайскому краю и приняты для практического использования.

Апробация работы. Основные материалы и результаты работ обсуждались на II Международном симпозиуме «Республика Алтай (Алтай - Золотые горы)» (Горно-Алтайск, 1999г.); Первом Всероссийском научно-практическом совещании «Проблемы и перспективы массового применения устройств защитного отключения в России» (Барнаул, 2000 г.); 6-ой Международной научно-практической конференции «Природные и интеллектуальные ресурсы Сибири (СИБРЕСУРС-6-2000)» (Томск, 2000 г.); 1-ой региональной научно-практической Интернет-конференции «Энерго-и ресурсосбережение – XXI век» (Орел, 2001г.); заседании Научно-технического совета Федерального центра науки и высоких технологий Всероссийского научно-исследовательского института по проблемам гражданской обороны и ликвидации последствий чрезвычайных ситуаций МЧС России (Москва, 2002г.); IX Международной научно-практической конференции «Природные и интеллектуальные ресурсы Сибири (Улан-Удэ, 2003г.); 2-ой Международной научно-технической конференции «Энергетика, экология, энергосбережение, транспорт» (Тобольск, 2004г.); на Международных научно-практических конференциях «Региональные аспекты обеспечения социальной безопасности населения Юго-Западной Сибири – проблемы снижения рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера (Барнаул, 2003, 2004, 2006 гг.); Международной научно-практической конференции СО РАСХН «Электроэнергетика в сельском хозяйстве» (Новосибирск, 2009 г.); X Международной научно-технической конференции «Автоматизация технологических объектов и процессов. Поиск молодых» (Донецк, 2010г.); 7-ой Международной научно-технической конференции «Энергообеспечение и энергосбережение в сельском хозяйстве» (18-19 мая 2010 г., ВИЭСХ).

На защиту выносятся:

1. Концепция вероятностного анализа безопасности нестационарных электроустановок, основанная на системном подходе, использовании математических, инструментальных и натурных методах исследования, и учитывающая в совокупности основные связи системы «человек-электроустановка-среда».

2. Метод, основанный на функционально-морфологическом описании системы безопасности электроустановок, идентификации и систематизации опасных факторов, обосновании показателей технической и экономической эффективности и определении их количественных оценок.

3. Математические модели электропоражения людей, приводящие к различным исходам (летальному, инвалидизации и временной потери трудоспособности), учитывающие штатные и аварийные режимы электроустановки и структурно-параметрические характеристики СБЭ.

4. Математические модели состояния изоляции передвижных и переносных электроустановок, ручного инструмента, позволяющие обосновать чувствительность УЗО, обеспечивающую защиту человека от «неотпускающих» токов, а также прогнозировать значения тока утечки при проектировании СБЭ.

5. Обобщенный метод системной оптимизации, позволяющий при различном качестве исходной информации произвести выбор структуры СЭБ, обеспечивающий нормативное значение риска в условиях ресурсных ограничений.

Достоверность теоретических положений и выводов подтверждена результатами экспериментальных исследований и многолетними натурными испытаниями разработанных средств электрической защиты.

Публикации. По материалам проведенных исследований опубликовано 64 печатных работ, из них: 22 статьи в журналах по перечню ВАК, 4 патента РФ на изображения, 1 монография и 1 учебник для вузов с грифом Минобрнауки РФ.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения, библиографического списка из 170 наименований и приложений. Общий объем диссертации составляет 368 стр., включая 63 рисунка и 23 таблицы.

Содержание работы

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, изложены научные новизна и практическая ценность работы, основные положения, выносимые на защиту, приведены сведения об апробации основных результатов работы.

В первой главе дан анализ современного состояния проблемы безопасности нестационарных электроустановок. Рассмотрены перспективы развития сельской энергетики и электрификации объектов агропромышленного комплекса, включая фермерские и приусадебные хозяйства, быт сельского населения. Приведена классификация средств малой механизации и нестационарных электроустановок в инфраструктуре села. Подробно рассмотрены и систематизированы факторы, характеризующие опасные условия эксплуатации нестационарных электроустановок. Приведены характеристика и анализ электротравматизма в сельском хозяйстве. Дан обзор научно-исследовательских и прикладных работ в области обеспечения безопасности сельских электроустановок.

В контексте сформулированных в диссертации задач выделены электрифицированные СММ и в соответствии с ПУЭ эти средства рассматриваются как нестационарные электроустановки, условно разделяя их на три группы: передвижные, переносные и ручной электроинструмент.

К передвижным электроустановкам отнесем электроагрегаты, которые могут использоваться в качестве автономных источников электроэнергии или рабочих машин и механизмов с кабельной системой электропитания. В эту группу входят различные дизель-электрические машины мощностью до 30 кВт и автоматизированные передвижные электростанции мощностью до 100 кВт. Последние, широко используемые в районах, где отсутствует централизованное электроснабжение, автоматически поддерживают номинальный режим при непрерывной работе в течение 24 часов без обслуживания. Электрические схемы передвижных источников электроэнергии содержат синхронные генераторы, системы возбуждения и регулирования напряжения, измерительную и защитно-коммутационную аппаратуру. Для электропитания передвижных электроустановок – рабочих машин (например, кормораздатчика) применяются переносные кабельные сети длиной 25-50 м из гибкого шлангового кабеля с резиновой изоляцией.

В качестве переносных электроустановок рассматривается электрооборудование и электрифицированные приборы, используемые на фермерских и личных подсобных хозяйствах и в быту населения. Сюда относятся приборы для приготовления пищи, нагрева воды, отопительные и санитарно-гигиенические приборы и др.

Ручной электроинструмент представляет собой рабочий механизм для выполнения различных технологических операций со встроенным электродвигателем. На долю ручного электроинструмента в настоящее время приходится 60-70 % общего объема выпускаемых промышленностью машин и механизмов с различными приводами.

В основу обеспечения безопасности человека при обслуживании НЭУ должно быть положено изучение механизма совокупного влияния вредных и опасных факторов среды обитания (в т. ч. производственной), способных оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность человека, его здоровье и потомство. Проведенный нами анализ показал, что из множества факторов, негативно воздействующих на организм человека при эксплуатации нестационарных электроустановок, наиболее опасными являются электрический ток и вибрации. (Известно, что каждая шестая электротравма приводит к летальному исходу, а из всех видов профзаболеваний наиболее распространенное среди работников сельскохозяйственных профессий является вибрационная болезнь, приводящая к инвалидности).

Эффективность разрабатываемых мероприятий по охране труда и электробезопасности существенно зависят от того, насколько правильно вскрываются причины несчастных случаев. Поэтому анализ электротравм представляет собой одно из основных направлений, способствующих повышению уровня безопасности при эксплуатации производственных и бытовых электроустановок.

Выполненный в диссертации анализ показывает, что сельский электротравматизм составляет около 60 % от общего их числа. Причем наибольшую опасность представляют передвижные и переносные электроустановки и электроинструмент, на долю которых приходится 52,3 % всех несчастных случаев, тогда как на стационарное электрооборудование – 2,4 %. Передвижные и переносные электроустановки эксплуатируются в более тяжелых условиях, чем стационарные. Мобильный характер обслуживания и эксплуатация в различных по степени опасности помещениях приводит к тому, что изоляция токоведущих частей постоянно подвергается механическим, химическим и другим воздействиям. Соединительные линии (например, кабельная система питания) имеют значительно большее число контактных соединений, штепсельных муфт и разъемов, чем в стационарных электроустановках. Кроме того, из-за мобильного характера работы корпуса электроустановок зануляют через одну из жил питающего кабеля. Зануление снижает, но не устраняет опасность электропоражения при замыкании на корпус. При этом опасность значительно увеличивается при обрыве зануляющей жилы кабеля, зачастую имеющей меньшее сечение, чем фазные провода. Все это существенно снижает безопасность передвижных и переносных электроустановок. Одновременно следует подчеркнуть, что эксплуатация мобильной электрифицированной техники требует использование достаточно квалифицированного труда, что в условиях сельского быта становится весьма проблематичным.

Электропроводки в сельских жилых домах выполняются в основном незащищенными, изолированными установочными проводами с алюминиевыми жилами. Такие электропроводки эксплуатируются многие десятилетия, не ремонтируются и не подвергаются периодическим испытаниям. Их ресурс уже исчерпан, а электрические нагрузки превышают нормативные в 2-3 раза. Поэтому электропроводка зачастую становится источником электропоражений и пожаров.

Нами установлено, что около 70 % травм происходит вследствие прямого контакта человека с токоведущими частями, находящимися под напряжением. Это группа электротравм является не только самой многочисленной, но и наиболее опасной из-за отсутствия эффективных мер электрозащиты. Травмы, вызванные появлением напряжения на нетоковедущих металлических частях оборудования, составляют треть всех случаев. Основная причина здесь – несовершенство применяемых мер безопасности.

На основании проведенного анализа статистических данных о несчастных случаях, собранных с помощью Региональной системы учета бытового и непроизводственного электротравматизма (РСУБЭТ) выявлены специфические особенности применения электроэнергии в быту сельского населения, которые, по существу, и обуславливают столь высокий уровень электротравматизма. К основным из них следует отнести низкую эффективность традиционных защитных средств (зануления и защитного заземления) и практически отсутствие современной меры – защитного отключения, несоответствие отечественной нормативной базы требованиям стандартов МЭК и др. Все это привело к тому, что электротравматизм в России в течение тридцати лет (после 1970-х годах) монотонно (близко к экспоненциальному закону) возрастал и к 2000 году увеличился более чем в три раза, в то время как показатель демографической частоты электротравматизма (Дч.эт) в странах Евросоюза за этот период снизился в 3, Японии – в 3,5 и США – в 1,4 раза.

Анализ статистических данных за неполное десятилетие (2000 – 2008 гг.) свидетельствует о том, что темпы роста общего электротравматизма относительно стабилизировались. Однако, следует отметить, что в структуре интегрального показателя Дч.эт среди населения (городского и сельского) как минимум в два раза при аналогичном снижении в количественном отношении этого показателя в сфере государственного и общественного производства.

Решению важной проблемы повышения надежности и безопасности систем электроснабжения общепромышленного и сельскохозяйственного назначения внесли И. А. Будзко, И. Ф. Бородин, Р. Н. Карякин, Т. Б. Лещинская, И. В. Наумов, О. К. Никольский, А. И. Сидоров, А. А. Сошников, Ю. А. Судник, Н. Н. Сырых, А. М. Худоногов, А. И. Якобс и др. В результате выполненных работ были разработаны теоретические основы оптимальных систем электроснабжения и безопасной эксплуатации электроустановок потребителей. Значительная часть выполненных работ получило дальнейшее развитие в математической теории оптимизации, теории надежности и принятия решения, создания методов расчета и проектирования сложных систем, а также в создании современной научно-обоснованной нормативной базы.

Проведенный аналитический обзор исследований по сформулированной в диссертации проблеме показал, что в большинстве своем они касаются стационарных систем электроснабжения сельских потребителей. Вместе с тем отсутствуют единые методологические основы построения системы безопасности нестационарных электроустановок, не разработана теория вероятностного анализа электробезопасности на основе концепции приемлемого риска. В сельском хозяйстве не решены многие важные научно-технические задачи, связанные с созданием и широким внедрением устройств защитного отключения, методами диагностики и прогнозирования эффективности мер электрозащиты и т. д.

Рисунок 1 – Основные направления исследований

На рисунке 1 изложены основные направления исследований, из которых следует, что создание системы обеспечения безопасности сельских нестационарных электроустановок является комплексной проблемой и должна решаться совместно на стадиях ее проектирования, создания и применения. Поэтому развитие научных основ и решение прикладных задач этой проблемы предопределило рассмотрение основных направлений исследований.

Изложенное обосновывает цель, поставленную в работе, и задачи подлежащие решению.

Вторая глава посвящена методологическим основам системного анализа безопасности сельских электроустановок. Приведено функционально-морфологическое описание системы «человек–электроустановка–среда» (Ч–Э–С). Изложены вероятностно-детерминистическая концепция индивидуального риска электротравмы и основы выбора его приемлемого уровня. Разработаны показатели эффективности функционирования системы безопасности электроустановок и методы вероятностного анализа оценки и прогнозирования риска, обоснована структура информационного обеспечения СБЭ.

Безопасность электроустановки (электрическая и пожарная) рассматривается как интегральная оценка результата взаимодействия компонентов системы «Ч–Э–С» (рисунок 2).

Под системой безопасности электроустановки (СБЭ) условимся понимать совокупность взаимосвязанных организационно-технических мероприятий и защитных средств (блоки А, Б, В и Г), обеспечивающих безопасное взаимодействие человека с электроустановкой в процессе его трудовой деятельности.

Свойства компонентов системы (Ч–Э–С) определяют состояние электробезопасности и учитываются определенной совокупностью параметров (факторов). Электротравма рассматривается как сложное случайное событие, которое в свою очередь

Рисунок 2 – Функционально-морфологическое описание системы


загрузка...