Механизмы микроэволюции вируса клещевого энцефалита (20.04.2009)

Автор: Карганова Галина Григорьевна

Для более детального изучения предполагаемого клеточного белкового рецептора была получена антиидиотипическая сыворотка к поверхностному гликопротеину Е ВКЭ. Для этого мыши были однократно иммунизированы 50мкг

очищенного белка Е (Timofeev et al., 1991). Для получения сыворотки у мышей была взята кровь из супраорбитальной вены на 9 (нормальный иммунный ответ на введение антигена) и 35 сутки после иммунизации (время максимального накопления антиидиотипических антител). Сыворотка мышей, взятая на 9 сутки после иммунизации, преципитировала из лизата клеток СПЭВ, инфицированных ВКЭ, белок Е. Сыворотка, взятая у тех же мышей на 35 сутки после иммунизации белком Е, содержала антиидиотипические антитела к этому белку, поскольку в ИФА при взаимодействии с иммуноглобулином против ВКЭ вела себя, как антиген.

Обработка клеток сывороткой с антиидиотипическими антителами перед адсорбцией вируса практически полностью блокировала связывание вирионов ВКЭ на высокоаффинном рецепторе. Данная сыворотка в РИП белков, меченных смесью [C14]-аминокислот или [C14]-глюкозамином, из лизатов незараженных клеток СПЭВ преципитировала только гликопротеин с мол. массой около 110 кДа.

В последствие появился ряд работ, в которых с помощью антиидиотипических поликлональных и моноклонАТ был выявлен целый набор претендентов в рецепторы для вирионов ВКЭ (Протопопова и др, 1996, 1997; Kopecky et al., 2005). С помощью моноклонАТ к нейтрализующим моноклонАТ к белку Е (в том числе к использованным в данной работе Е6В) из нескольких культур клеток были выделены белки с мол. массами 43, 67, 110, 210 кДа (Протопопова и др., 1996, 1997). Было показано, что белок 110 кДа является ?1-цепью, а белок 210 кДа –?3-цепью интегрина. Для вирусов ЛЗН и ЯЭ так же показано, что ?v?3-интегрин является общим для этих вирусов рецептором на поверхности клеток Vero, HeLa, N2A (клетки мышиной нейробластомы) (Chu and Ng, 2004), и этот рецептор опосредует проникновение вирионов в клетку.

Выявленный белок с мол. массой 67 кДа оказался - ламининсвязывающим белком (ЛСБ) и был предложен авторами в качестве рецептора для ВКЭ с константой связывания 2,5х107 М-1, т.е. низкоаффинного рецептора (Protopopova et al., 1997; Локтев и др., 2002). Представленные данные позволяют высказать предположение, что на поверхности белка Е ВКЭ есть участок, структурно близкий рецепторной области ламинина, который может взаимодействовать с разными типами рецепторов для ламинина. Таким образом, взаимодействие ЛСБ и ГАГ с белком Е ВКЭ может иметь сходный механизм, поскольку ГАГ могут выполнять функции ко-рецепторов для ламинина.. Выявленная нами замена в 122 позиции белка Е глутаминовой кислоты на глицин, повышает положительный заряд белка Е и приводит к повышению связывания с ГАГ клетки. В наших экспериментах, в отличие от родительского штамма ЭК-328 вариант М, имеющий такую замену, слабо взаимодействует с моноклонАТ Е6В к эпитопу белка Е ВКЭ, отвечающему за связывание с ЛСБ на поверхности клетки. Это позволяет предположить, что ГАГ и ЛСБ могут служить в качестве одного из ко-рецепторов для разных вариантов ВКЭ, при этом адаптация к новому хозяину может сопровождаться изменением связывания с этими рецепторами.

Таким образом, нами впервые было показано, что ВКЭ имеет два типа рецепторов на поверхности клетки: высокоаффинный, по-видимому, белковой природы, с которым связывается менее 1% сорбированных вирионов, и низкоаффинный, с которым связывается основная масса вирионов ВКЭ.

Изменение патогенетических характеристик ВКЭ при адаптации к клещам и переадаптации к млекопитающим

Сравнение вирулентности штамма Эк-328 и варианта М проводили на мышах линии Balb/c разного возраста, которые были инокулированы и/ц и интраперитонеально (и/п). Для сравнения использовали штамм Абсеттаров ВКЭ, обладающий высокой нейроинвазивностью для мышей этой линии.

Как видно из табл. 4, все изученные вирусы обладали близкой нейровирулентностью для мышей 6 и 12 г. В экспериментах на взрослых мышах штамм Эк-328 продемонстрировал несколько меньшую НИ, чем штамм Абсеттаров, исходя из данных о количестве БОЕ, необходимых для того, чтобы вызвать 50% гибель животных. НИ варианта М была в 10000 раз ниже, чем у штамма ЭК-328.

Таблица 4. Вирулентность штамма Эк-328, варианта М и штамма Абсеттаров ВКЭ для мышей BALB/c разного возраста

вирусы и/ц заражение и/п заражение

Мыши 5-7г Мыши 12 г Мыши 5-7г

ЛД50(БОЕ) СПЖ(сутки)* ЛД50(БОЕ) ЛД50(БОЕ) СПЖ(сутки)**

Абсеттаров 0,1 4,2±0,2 0,1 3 9,9(0,5

ЭК-328 0,5 5,0±0,0 0,5 18 12(1,2

Вариант М 0,4 5,1±0,3 2,5 250 000 5 месяцев ***

* доза заражения 5,5 lg ЛД50; ** доза заражения 10 ЛД50; *** - период наблюдения.

Для характеристики инфекции мыши линии Balb/c 12г были инокулированы и/п 1000 БОЕ данными вирусами. Ежедневно у 3-х мышей брали кровь и органы, содержание инфекционного вируса в которых определяли методом бляшек. На 7-8 день по три мыши для каждого вируса были использованы для патоморфологического исследования.

У мышей, инфицированных штаммом Абсеттаров, после и/п введения 1000 БОЕ инфекция протекала остро. Все животные заболели на 6-7 сутки и к 9 дню погибли. Гистологическое исследование выявило характерную для ВКЭ картину менингоэнцефалита. У животных наблюдали двухволновую виремию с более выраженным вторым пиком (табл. 5). В мозгу вирус появлялся, начиная с 5 суток.

Таблица 5. Динамика появления инфекционного вируса (lgБОЕ/мл 10% суспензии) в крови органах и противовирусных АТ (ИФА) в сыворотках мышей после и/п введения 1000 БОЕ штаммов Абсеттаров, Эк-328 и варианта М

штамм Абсеттаров

дни после начала инфекции

1 2 3 4 5 6 7 8

Кровь* 2 2,7 2,7 0 2 4 2,7 4,1

мозг 0 0 0 0 4,8 6,6 7,8 7,6

л/у 0 0 2 0 0 3 0 0

селезенка 0 4,7 2,4 3,9 4,9 4 0 5,8

AT 0 0 0 160 160 320 320 320

штамм ЭК-328

дни после начала инфекции

1 2 3 4 5 6 7 8

Кровь 2,3 4,3 4,1 0 2,3 2 0 0

мозг 0 0 0 3,2 4,3 4,7 6,8 7,2

л/у 0 0 0 0 0 0 3 0

селезенка 2 3 3,2 3,7 3,4 2,7 0 4,7

AT 0 0 0 160 160 160 320 320

вариант М

дни после начала инфекции

1 2 3 4 5 6 7 8

Кровь 0 0 0 0 0 0 0 0


загрузка...