Эмбриологические особенности системы семенной репродукции факультативно апомиктичных злаков (19.10.2009)

Автор: Юдакова Ольга Ивановна

факультативно апомиктичные злаки характеризуются поливариантностью путей формирования семени на базе одного генотипа (в пределах одного растения, семязачатка, мегагаметофита), что обусловлено возможностью реализации двух программ развития (половой и апомиктичной) и комбинацией их элементов;

поливариантность присуща и процессу формирования семени в целом, и отдельным этапам апомиктичной программы развития (разные варианты гаметофитогенеза, эмбрио- и эндоспермогенеза);

универсальными эмбриологическими особенностями факультативно апомиктичных злаков являются асинхронность эмбриологических процессов и специфические отклонения в структуре женских гаметофитов;

характер проявления апомиксиса у злаков на эмбриологическом уровне не зависит от условий места обитания популяций.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность проведенных исследований, определяются их цели и задачи.

Глава 1. АПОМИКСИС У ПОКРЫТОСЕМЕННЫХ РАСТЕНИЙ: НЕРЕШЕННЫЕ ПРОБЛЕМЫ И ДИСКУССИОННЫЕ ВОПРОСЫ

(обзор литературы)

В главе рассматриваются вопросы терминологии и классификации апомиксиса; приводятся сведения о распространении апомиктичного способа репродукции у покрытосеменных растений (Frixell, 1957; Хохлов, 1970; Carman, 1995, 2007; Батыгина, 2000; Шишкинская и др., 2004 и др.); обсуждаются дискуссионные вопросы о причинах и механизмах возникновения апомиксиса (Gustafsson, 1946-1947; Rutishauser, 1969; Savidan, 1982; Nogler, 1995; Leblanc et al., 1995; Carman, 1997, 2007; Albertini, 2001; Соколов, Хатыпова, 2002; Perotti et al., 2004; Matzk et al., 2005, 2007; Okada et al., 2007 и др.) и его роли в эволюции покрытосеменных растений (Darlington, 1937; Stebbins, 1941; Gustafsson, 1946-1947; Петров, 1964; Хохлов, 1970; Wet de et al., 1974; Ellstrand, Roose, 1987; Asker, Jerling, 1992; Шишкинская, Тырнов, 2000; Hoerandl, Paun, 2007 и др.).

Глава 2. МАТЕРИАЛ И МЕТОДЫ

2.1. Материал исследования

Исследование проведено на кафедре генетики Саратовского государственного университета имени Н.Г. Чернышевского в 1989-2009 гг. Изучение особенностей эмбриологии апомиктичных видов, начиная с процессов спорогенеза и заканчивая формированием семени, проводили на апомиктичных видообразцах мятликов (Poa L.) из коллекции Ботанического сада Саратовского госуниверситета: Poa badensis Haenke, P. chaixii Vill., P. compressa L. и P. pratensis L. Выбор мятликов в качестве объекта исследования обусловлен не только широким распространением апомиксиса у видов этого рода (Gustafsson, 1946; Nygren, 1954; Muntzing, 1965; Жиров, 1970; Кордюм, 1970; Kellogg, 1987; Батыгина, Маметьева, 1979; Шишкинская и др., 1994; Кутлунина, 2001 и др.), но и тем, что в последние годы они все чаще используются для решения проблем генетического контроля апомиксиса (Matzk, 1991; Naumova et al., 1993; Barcaccia et al., 1998; Albertini et al., 2001, 2004; Matzk et al., 2005, 2007 и др.). Кроме того, изучение эмбриологии представителей рода Poa имеет важное практическое значение, так как подавляющее большинство из них являются ценными кормовыми и газонными травами. Они включены в различные селекционные программы, в том числе направленные на создание сортов для долголетних пастбищ.

Растения выращивались в открытом грунте. Фиксацию соцветий проводили ацетоалкоголем (3:1) темпорально: на стадии нераскрывшихся цветков, начала цветения, а также спустя 1, 2, 3, 4, 5, 6, 10, 15 сут от начала цветения. В указанные сроки фиксировали соцветия не менее 10 растений каждого видообразца. Соцветия P. pratensis были зафиксированы в режиме открытого цветения и в беспыльцевом. Во втором варианте из зрелых нераскрывшихся цветков пинцетом удаляли пыльники. Соцветия изолировали бумажными пакетами, а затем фиксировали темпорально спустя 2, 3, 4, 5, 7, 14 сут после кастрации. У каждого видообразца анализ микроспороцитов и мужских гаметофитов проводили у растений, зафиксированных до начала цветения и в его разгар, структуру женских гаметофитов исследовали при всех сроках фиксации. С одного растения приготавливали не менее двух препаратов пыльцы и 20 зародышевых мешков. Всего было проанализировано более 10000 цитологических препаратов.

Объектом популяционно-эмбриологических исследований послужила коллекция видообразцов дикорастущих злаков, собранных в разных регионах России. В ходе экспедиций производили случайную выборку видов злаков, фоновых для изучаемых территорий. В период открытого цветения 10-15 растений одного вида собирали с площади не менее 20 м2 и фиксировали смесью Чемберлена (Паушева, 1970). Всего было изучено 79 популяций 54 видов 28 родов злаков, проанализировано более 15000 препаратов.

2.2. Физико-географическая характеристика районов сбора материала

Сбор видообразцов осуществляли в регионах с разными климатическими условиями: в двух районах с умеренно-холодным резко континентальным климатом – Приполярном Урале и Якутии, в районе с умеренным континентальным климатом – Нижнем Поволжье (Саратовской обл.), а также в уникальном по своим климатическим и географическим условиям Камчатском полуострове. Выбор Якутии, Приполярного Урала и Камчатки в качестве мест сбора материала был обусловлен тем, что согласно имеющимся на сегодня сведениям, наибольшее количество апомиктичных форм сосредоточено в регионах с неблагоприятными для растений условиями обитания (в северных широтах и на высокогорье) (Stebbins, 1950; Richards, 1997; Bierzychudek, 1985; van Dijk, 2003 и др.). Далее в главе приводится описание климатических и географических условий районов сбора видообразцов.

2.2. Методы исследования

Способ репродукции растений устанавливали на основе результатов анализа степени дефектности пыльцы (СДП) и структуры женских гаметофитов. Показатель «качество пыльцы» использовали для предварительной диагностики апомиксиса. Основными критериями для констатации апомиктичного способа репродукции служили эмбриологические признаки апомиксиса, касающиеся особенностей развития женского гаметофита, зародыша и эндосперма (Хохлов и др., 1978). Заключение о половом способе репродукции делали на основе двух главных критериев: отсутствии эмбриологических признаков апомиксиса и регистрации двойного оплодотворения.

Для получения наиболее полной информации о специфике эмбриологических процессов при апомиксисе использовали комплекс различных методов цитоэмбриологического анализа: классический метод приготовления постоянных препаратов и экспресс-методы исследования мужской и женской генеративных сфер. Микроспорогенез и структуру микрогаметофитов изучали на временных и глицерин-желатиновых препаратах, окрашенных ацетокармином (Паушева, 1970; Куприянов, 1989). Женскую генеративную сферу исследовали на постоянных препаратах (Паламарчук, 1964), а также приготовленных с помощью методов просветления семязачатков (Herr, 1971) и выделения зародышевых мешков с помощью ферментативной мацерации и последующей диссекции семязачатков (Куприянов, 1982).

Препараты анализировали с помощью микроскопов «Axiostar Plus» (K.Zeiss), «Axioskop» (K.Zeiss), «Jenoval» (К.Zeiss) при увеличении окуляра 15х и объектива 20х, 40х, 100х. Фотографирование осуществляли с помощью видеоадаптера «Canon» и программ визуализации изображения «Zoombrowser» и «AxioVision». Математическую обработку результатов проводили в соответствии с известными рекомендациями (Плохинский, 1970; Зайцев, 1984).

Глава 3. ЭМБРИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

ФАКУЛЬТАТИВНО АПОМИКТИЧНЫХ ВИДОВ МЯТЛИКОВ

Изучение особенностей и закономерностей реализации разных способов репродукции (апомиксиса и амфимиксиса) в пределах одного растения и популяции в целом явилось основной целью первого раздела диссертационной работы. Применение ускоренных методов исследования способствовало выявлению широкого спектра нарушений развития репродуктивных структур апомиктичных злаков. Их анализ важен для понимания механизмов процессов, происходящих в ходе онтогенеза, а также для определения основных направлений и возможных пределов изменчивости репродуктивных структур (гаметофитов, гамет, зародыша и эндосперма).

3.1. Микроспорогенез и структура мужского гаметофита

Специфика процесса микроспорогенеза у изученных апомиктичных видообразцов мятликов заключается в возможности формирования в одном пыльнике микроспор с разным уровнем плоидности: гаплоидных, анеуплоидных и диплоидных. К анеуплоидии приводят отставания отдельных хромосом в первом или во втором делении мейоза, к нередукции – различные нарушения расхождения хромосом и цитокинеза. Установлено три механизма образования диплоидных микроспор. Во-первых, нередукция может осуществляться за счет выпадения второго деления мейоза в одной из клеток диады микроспор. В результате вместо тетрады формируются триады с двумя гаплоидными и одной диплоидной клеткой (P. badensis – 1,5%; P. compressa – 0,4%; P. chaixii – 0,1%; P. pratensis – 4,0%). Во-вторых, у P. compressa и P. pratensis образование диплоидных микроспор также происходило за счет движения хромосом к одному полюсу клетки в анафазе I или II. Клеточная перегородка при этом закладывалась в зоне экватора, вследствие чего одна из клеток оказывалась безъядерной, а другая содержала нередуцированное число хромосом. Этот способ нередукции описан у апомиктичных форм впервые. И, наконец, диплоидные микроспоры формировались за счет слияния ядер в двухъядерных клетках. Их образование, как правило, являлось результатом выпадения цитокинеза в телофазе II. Кроме того, у P. pratensis наблюдали случаи, когда в анафазе II хромосомы двигались к одному полюсу клетки двумя отдельными группами и формировали два дочерних ядра. Заложение клеточной перегородки в зоне экватора приводило к образованию безъядерной и двухъядерной клеток.

В зрелых пыльниках, наряду с нормальной трехклеточной пыльцой, встречались микрогаметофиты с четырьмя спермиями (P. badensis – 7,4%, P. chaixii – 9,4%, P. compressa – 7,4%, P. pratensis – 1,6%). Это указывает на то, что ядра в двухъядерных микроспорах могут не только сливаться, но и делиться независимо друг от друга.

В среднем около 50-60% пыльцевых зерен в пыльниках изученных растений отклонялись от нормы по своему размеру и/или выполненности цитоплазмы. Коэффициент вариации (СV) диаметра пыльцевых зерен в пределах одного пыльника у всех видообразцов превышал 15%. Крупные пыльцевые зерна иногда в несколько раз превосходили по размеру самые мелкие. Морфометрические различия начинали проявляться на стадии микроспор, но наиболее выражены были в зрелой пыльце. Принимая во внимание известный факт корреляции размера клеток с плоидностью ядра, можно предположить, что часть негаплоидных пыльцевых зерен у апомиктов остается жизнеспособной. Это предположение подтвердили результаты сравнительного анализа частоты аномалий в первом делении мейоза с количеством нежизнеспособной (пустой или с плазмолизом) пыльцы в пыльниках. У P. pratensis при средней частоте нарушений расхождения хромосом в первом делении мейоза 8,8% количество дегенерировавших пыльцевых зерен должно составлять не менее 35,2%, поскольку из одной материнской клетки микроспор образуется четыре микроспоры. Однако в изученной выборке количество нежизнеспособной пыльцы оказалась равной всего лишь 5%, что достоверно ниже теоретически ожидаемого значения (P=0,05). Это возможно только в том случае, если часть пыльцевых зерен с разным уровнем плоидности будут оставаться жизнеспособными.

Процессы микроспоро- и микрогаметофитогенеза в пределах одного пыльника у мятликов протекали асинхронно. Мейоциты могли находиться на разных стадиях деления: от профазы I до телофазы II. В зрелых пыльниках, наряду с трехклеточными пыльцевыми зернами, встречались одноядерные, двухъядерные и двухклеточные. Поскольку онтогенез мужских гамет сопровождается изменением их формы и размера (Грати, 1971; Нокс, 1990), то присутствие в пыльниках пыльцевых зерен с округлыми, овальными и веретеновидными спермиями также является отражением десинхронизации процесса микрогаметофитогенеза.

3.2. Мегаспорогенез и мегагаметофитогенез

Нередуцированные зародышевые мешки у P. chaixii, P. compressa и P. pratensis развиваются из соматических клеток нуцеллуса в результате трех митотических делений (апоархеспория* Poa(Hieracium)-типа). Мейоциты либо дегенерируют, либо дают начало эуспорическим зародышевым мешкам, развитие которых проходит параллельно с развитием одного или нескольких апоархеспорических мегагаметофитов. Около 30% зрелых семязачатков содержали от 2 до 5 зародышевых мешков.

Наряду с формированием эуспорических и апоархеспорических мегагаметофитов, у P. pratensis в нескольких семязачатках было зарегистрировано развитие зародышевого мешка из материнской клетки мегаспор (апоспория Antennaria-типа). Разные варианты развития нередуцированного женского гаметофита встречались также у P. badensis. У этого видообразца в подавляющем большинстве семязачатков зародышевые мешки формировались из халазальной клетки диады мегаспор (диплоспория Taraxacum-типа). В то же время в единичных случаях рядом с диадой и тетрадой мегаспор были обнаружены крупные клетки, морфология которых соответствовала инициальным клеткам апоархеспорических зародышевых мешков. Только 2,5% семязачатков у P. badensis содержали сдвоенные зародышевые мешки. Формирование более двух зародышевых мешков в одном семязачатке не наблюдалось.

Структура зрелых женских гаметофитов у всех видообразцов характеризовалась широким спектром изменчивости. Наряду с редуцированными и нередуцированными зародышевыми мешками нормального строения (восьмиядерными, семиклеточными) встречались мегагаметофиты с нетипичной структурой. Среди атипичных зародышевых мешков преобладали мегагаметофиты с яйцеклеткоподобными синергидами (P. badensis – 0,1%; P. chaixii – 6,1%; P. compressa – 5,5%; P. pratensis – 4,4%) и дополнительными полярными ядрами (0,3; 6,3; 4,2 и 3,8%, соответственно). С более низкой частотой формировались зародышевые мешки с недифференцированным яйцевым аппаратом и неполным комплектом элементов (без синергид или антипод). У P. pratensis в единичных мегагаметофитах обнаружены яйцеклеткоподобные антиподы. Кроме того, у P. chaixii и P. pratensis зарегистрированы уникальные случаи образования вместо одной из антипод дополнительного зародышевого мешка. В некоторых зародышевых мешках наблюдалось сочетание разных гаметофитных аномалий. Основными причинами образования мегагаметофитов с атипичной структурой являются:

преждевременное начало процесса дифференциации клеток в зародышевых мешках, не прошедших все циклы митотических делений;

нарушение локализации ядер в ценоцитном зародышевом мешке, приводящее к смене направления дифференциации его элементов (трансдетерминации).

Вследствие десинхронизации митозов или выпадения делений в некоторых недифференцированных зародышевых мешках присутствовало нестандартное количество (3, 5, 6, 7) ядер. Недостаток ядер приводил в дальнейшем к отсутствию какого-либо элемента в зрелом зародышевом мешке. Чаще всего встречались мегагаметофиты без антипод, так как именно в халазальном районе наблюдалась нехватка ядер или их полное отсутствие. Ценоцитные зародышевые мешки, у которых ядра располагались в микропилярной части, были зарегистрированы у P. badensis (0,4%), P. chaixii (1,9%), P. compressa (0,9%) и P. pratensis (3,9%). В зрелых цветках практически с той же частотой (0,5; 1,6; 1,2 и 2,2%, соответственно) встречались гаметофиты без антипод.

В большинстве атипичных мегагаметофитов количество ядер соответствовало норме, но их локализация была необычной для ценоцитных стадий. Наряду с биполярными зародышевыми мешками встречались: 1) аполярные с центральным расположением ядер; 2) униполярные, ядра которых были сосредоточены на одном конце клетки; 3) полиполярные с локализацией ядер на трех или четырех полюсах. Нарушение поляризации может привести к попаданию ядра в нехарактерную для него зону. Изменение позиционной информации в свою очередь делает возможным трансдетерминацию, т. е. переопределение направления развития элементов зародышевого мешка.

В современной теории онтогенеза позиционной информации отводится ведущая роль в определении пути дифференциации клеток (Корочкин, 1999). Результаты сравнительного анализа атипичных зародышевых мешков на разных стадиях развития позволяют определить локализацию зон дифференциации в мегагаметофите. Среди более чем 4000 проанализированных зародышевых мешков не было зарегистрировано ни одного достоверного случая образования дополнительного полярного ядра за счет ядер «синергид», тогда как женские гаметофиты с дополнительными яйцеклетками вместо синергид встречались у всех видообразцов. В то же время среди сформированных зародышевых мешков обнаружены восьмиядерные мегагаметофиты с тремя полярными ядрами, трехклеточным яйцевым аппаратом и двумя антиподами, что указывает на образование дополнительного полярного ядра за счет одной из «антипод». Такое переопределение пути развития ядер мегагаметофита возможно, если зоны дифференциации в нем располагаются линейно одна над другой: в халазальной области зона антипод, за ней зона центральной клетки, затем зона яйцеклетки, и, наконец, зона синергид (рис. 1).

- зона синергид;

- зона яйцеклетки;

- зона центральной клетки;


загрузка...