Принципы разработки альтернативных вариантов рациональных технологий мясных продуктов нового поколения с адаптированными пищевыми добавками (19.10.2009)

Автор: Шипулин Валентин Иванович

Рисунок 12 – Содержание а - остаточного нитрита натрия, б – нитрозопигментов

Для определения оптимальных уровней внесения исследуемых препаратов, при которых достигается наиболее приемлемый результат выходных параметров, с помощью вычисленных коэффициентов уравнений регрессий были проведены расчеты значений функций с визуализацией данных. Величинами, наиболее характеризующими функционально-технологические свойства фаршевых систем, является водосвязывающая способность (ВСС), а готового продукта – водоудерживающая способность (ВУС) и потери при тепловой обработке (ПТО). Для наглядности динамики изменения ВСС была локализована интересующая окрестность и в ней проведены исследования значений данного показателя. Ориентируясь на оптимальные значение водосвязывающей способности мясных систем - 98,1%, было показано, что его можно получить шестью различными способами (табл. 7), путем варьирования таких факторов, как уровень внесения белкового препарата (Х2) и фосфата (Х3).

Таблица 7 – Динамика изменения показателя ВСС от уровня введения Х2 – белка «Аркон-S» и Х3 – фосфата «Пуромикс-66»

Стремясь свести дозу внесения фосфатного препарата к минимуму, был принят вариант соответствующий следующему уровню введения препаратов: белок (Х2) «Аркон-S»=4,0 % и фосфат (Х3) «Пуромикс-66»=0,248 % (?0,25 %). Полученные графики поверхности отклика и изолиний ее сечений (рис. 13) визуализируют процесс увеличения водосвязы-вающей способности в зависимости от варьируемых факторов.

По аналогии была проведена математическая обработка экспериментальных данных для совместного использования препаратов – «Лактусан», МБК «Мол-Про», фосфата «Олбрайт». Полученные уравнения регрессии идентичны ранее описанным нами уравнениям, рассчитанным при внесении препаратов «Лаэль», СБК «Аркон-S», фосфата «Пуромикс-66».

Результаты математического моделирования позволили определить количество используемых добавок (в %) в составе МФМ:

-СБК «Аркон-S» - фосфат «Пуромикс-66» - препарат «Лаэль»: 4,0 – 0,25 – 0,15;

- МБК «Мол-Про» - фосфат «Олбрайт» - препарат «Лактусан»: 3,6 – 0,518 – 0,15.

Экспериментальная проверка данных, полученных в результате математического моделирования, подтвердила достоверность расчетного количественного соотношения компонентов в МФМ, способного модифицировать свойства фаршевых систем при производстве колбас из свинины PSE (табл. 8).

Таблица 8 – Расчетные и экспериментальные значения основных технологических показателей

Показатели СБК «Аркон»-S:

фосфат «Пуромикс-66»: препарат «Лаэль» МБК «Мол-Про»:

фосфат «Олбрайт»:

препарат «Лактусан»

Эксперимент Расчет Эксперимент Расчет

Водосвязывающая способность, % 97,9±1,3 98,1 96,5±1,2 96,4

Водоудерживающая способность, % 80,9±1,1 81,2 81,0±0,9 81,0

Потери при тепловой обработке, % 1,04±0,01 1,09 0,68±0,01 0,77

Проведенные аналитические и экспериментальные исследования позволили сформировать научные принципы создания и использования многоцелевых функциональных модулей на основе белковых препаратов животного и растительного происхождения, пищевых фосфатов и лактулозосодержащих препаратов для модификации свойств PSE сырья при производстве вареных колбас с гарантированными показателями качества.

Шестая глава посвящена научным аспектам создания многоцелевого функционального модуля на основе деминерализованной молочной сыворотки (ДМС), адаптированного к мясным системам.

Рассматривая вопрос использования молочной сыворотки в качестве одного из рецептурных компонентов мясопродуктов, следует уделить особое внимание специфичности его состава - значительному количеству кальция. С одной стороны необходимо учитывать, что взаимодействие ионов кальция с кальцийзависимыми белками мышечной ткани, являющейся основным элементом мясного сырья, вызовет изменения структуры белковых молекул, что повлечет за собой изменение функционально-технологических свойств сырья (эмульгирующей, гелеобразующей и водосвязывающей способности). С другой стороны это возможность обогащения ценным макроэлементом пищевых продуктов лечебно-профилактического и функциональ-ного назначения.

При использовании молочной сыворотки в колбасном производстве, в естественном виде и в виде белковых концентратов на ее основе, в мясную систему вносят не только определенное количество белков, лактозы и кальция, но и значительную часть одновалентных ионов – натрия и калия. При этом уровень их внесения нерегулируем, что не позволяет с большой достоверностью прогнозировать свойства системы и, в конечном итоге, качество готового продукта.

Появление современных методов обработки полидисперсных биологических систем, таких как деминерализация, позволяет не только удалить часть минеральных веществ, содержащихся в сыворотке, но и способствует ее частичному раскислению. Деминерализация молочной сыворотки предполагает изменение не только минерального состава, но и физико-химических свойств. Учитывая данные, полученные при проведении поискового эксперимента, в качестве объекта исследования выбрана молочная сыворотка (подсырная и творожная) с уровнем деминерализации 50±2 %, обеспечивающим оптимальный интервал значений рН для мясных систем. Перед проведением процесса обессоливания молочную сыворотку сгущали до концентрации сухих веществ в системе 20 %, необходимой для максимальной электропроводности.

Анализ минерального состав концентрированной подсырной несоленой и творожной сыворотки до и после деминерализации (табл. 9) показал, что процесс деминерализации привел к снижению содержания ионов натрия в три раза, ионов калия – в 3,5–4 раза по сравнению с натуральной сгущенной сывороткой, уменьшению концентрации двухвалентных ионов – Са2+ для творожной – в 2 раза, для подсырной сыворотки – в 1,6 раза и Mg2+, а также анионов фосфора. Однако, значительное количество двухвалентных ионов сохраняется в системе, причем часть из них переходит в ионизированное состояние, что может быть обусловлено удалением одновалентных ионов натрия и калия.

Таблица 9 – Минеральный состав молочной сыворотки с концентрацией сухих веществ 20 % (n=3, V<16)

?????????????'

???????????C

?????????i

???????

???????

?и концентрацией Са2+как в натуральной, так и деминерализованной сыворотке. При этом, не смотря на то, что в результате деминерализации количество общего кальция в сыворотке уменьшилось, уровень ионизированного Са2+ соответствует его содержанию в необработанной молочной сыворотке, что дает основание утверждать, что в процессе электродиализа происходит перераспределение связанного и ионизированного кальция, относительно его общего содержания в системе молочной сыворотки. При этом в интервале рН, наиболее приемлемом для мясопродуктов - 6,0-7,0 ед., сохраняется значительное количество Са2+ (7 – 27 ммоль/л), теоретически достаточного для инициирования процесса ионотропного гелеобразования кальцийзависимых белков.

Для оценки возможности целенаправленного использования молочной демине-рализованной сыворотки в качестве катализатора структурообразования проведены исследования характеристик гелей, полученных на основе соевого белкового концентрата, при гидратации его творожной и подсырной деминерализованной сывороткой с массовой долей сухих веществ 10 % и 20 %. В качестве исследуемых показателей были выбраны критическая концентрация гелеобразования (ККГ) и степень пенетрации термообработанных гелей при уровне гидратации препаратов от 1:4 до 1:9 с интервалом разведения 0,5. Экспериментальное определение величины ККГ суспензий соевого концентрата показало, что при использовании воды в качестве растворителя данный показатель составил 11,7 %, в то время как для творожной сыворотки (СВ=10%) критической концентрацией гелеобразования является 10,8 %, для подсырной сыворотки (СВ=10%) – 10,2 %.

При изучении кинетики процессов гелеобразования систем «соевый белок – деминерализованная молочная сыворотка» проводилась также оценка влияния количества внесенного в систему ионизированного кальция. Полученные данные свидетельствуют о том, что при высокой концентрации соевого белка в системе и содержании ионов Са2+ до 108 мг/кг, процессы структурирования протекают достаточно интенсивно, что позволяет получить прочные и стабильные гели для использования в технологии мясопродуктов.

С учетом специфичности свойств ДМС проведены исследования по определению ее влияния на структурирование мясных фаршевых систем. На основании изучения СМС фаршевых систем (ПНС - для сырых фаршей и степень пенетрации - для термообработанных продуктов) установлено, что внесение 15 % и 20 % сыворотки (количество Са2+ составляет 21 – 28 мг/кг для подсырной и 81 - 108 мг/кг для творожной) способствует уплотнению фаршевых систем, что свидетельствует о положительном влиянии ионов Са2+ на процессы структурообразования мясных систем (табл. 10) и улучшения их ФТС.

Таблица 10 – Физико-химические и структурно-механические показатели фаршевых систем до и после термообработки (n=3, V<16)

Показатели Уровень введения, %

Вода Подсырная сыворотка Творожная сыворотка

10 15 20 10 15 20 10 15 20

Сырой фарш

рН, ед. 6,28 6,31 6,39 6,22 6,35 6,42 6,11 6,17 6,21


загрузка...