Резонансные явления при пространственных колебаниях нелинейных систем (17.01.2011)

Автор: Муницын Александр Иванович

МУНИЦЫН Александр Иванович

РЕЗОНАНСНЫЕ ЯВЛЕНИЯ ПРИ ПРОСТРАНСТВЕННЫХ КОЛЕБАНИЯХ НЕЛИНЕЙНЫХ СИСТЕМ

Специальность 01.02.06 – Динамика, прочность машин, приборов

и аппаратуры

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Москва 2011

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Ивановский государственный энергетический университет им. В.И.Ленина» на кафедре «Теоретическая и прикладная механика»

Официальные оппоненты: доктор технических наук, с.н.с.

Банах Людмила Яковлевна

доктор физико-математических наук,

профессор

Попов Александр Леонидович

доктор технических наук, с.н.с.

Тяпин Александр Георгиевич

Ведущая организация: Ивановская государственная текстильная

академия

Защита состоится 18 марта 2011 г. в 15.00 часов на заседании диссертационного совета Д-212.157.11 при Московском энергетическом институте (техническом университете) по адресу:

111250, г. Москва, ул. Красноказарменная, д.17, ауд. Б-407.

С диссертацией можно ознакомиться в библиотеке Московского энергетического института (технического университета).

Отзывы на автореферат в двух экземплярах, заверенные печатью организации, просим направлять по адресу: 111250, Москва, Красноказарменная ул., д. 14, Ученый совет МЭИ(ТУ).

Автореферат разослан 2011 г.

Ученый секретарь

диссертационного совета

кандидат технических наук, доцент П.В.Волков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

В диссертации рассмотрены вопросы, связанные с исследованием резонансных явлений при пространственных колебаниях нелинейных механических систем с близкими значениями собственных частот колебаний в двух ортогональных плоскостях.

Актуальность темы диссертации. В современных условиях возрастает сложность проектируемых технических объектов, совершенствуются методы их расчета при сложных динамических режимах нагружения. Использование высокопроизводительных машин приводит к увеличению амплитуд колебаний и расширению спектра вибрационных нагрузок. Интенсификация колебаний может привести к полной расстройке и отказу динамической системы, с другой стороны, колебания с большими амплитудами являются рабочим режимом большого числа современных машин. Для изучения этих явлений необходимо применять методы нелинейной теории колебаний.

Для решения большого ряда технических проблем представляет интерес исследование нелинейных резонансных явлений в механических системах при воздействии внешних периодических нагрузок. Для реализации подобных явлений необходимо выполнение определенных соотношений между частотами собственных колебаний нелинейно-связанных между собой парциальных систем либо между собственными частотами и частотой внешнего возбуждения. В этих условиях создаются предпосылки для перераспределения энергии между различными обобщенными координатами системы, вследствие чего могут возбуждаться колебания по тем формам и в тех направлениях, по которым непосредственно не действуют внешние возмущающие нагрузки.

Внутренним свойством таких колебательных систем является скачкообразное изменение их поведения при непрерывном изменении внешних условий. Так, струна или стержень под действием вибрационной нагрузки, действующей в одной плоскости, могут совершать как плоские, так и пространственные колебания в зависимости от значений параметров задачи. Для различных режимов движения характерны качественно различные поля напряжений и соответственно различные прочностные характеристики. Поэтому актуальной проблемой является создание математических моделей нелинейных систем и нахождение всех существующих решений.

Целью работы является выявление и практическое использование новых резонансных явлений в системах с близкими значениями собственных частот колебаний. Рассматриваются нелинейные пространственные колебания нити с натяжным устройством и пространственные колебания стержня с неподвижными в продольном направлении опорами и близкими значениями собственных частот изгибных колебаний в разных плоскостях.

Для достижения этой цели были поставлены следующие основные задачи:

- составление математической модели рассматриваемых задач в виде системы дифференциальных уравнений и граничных условий;

- решение полученных уравнений для одномодового приближения методом возмущений в сочетании с методом усреднения. Для ряда случаев, в частности при отсутствии диссипации, это решение может быть получено в аналитическом виде;

- разработка и программная реализация численного метода решения приведенной системы нелинейных уравнений на основе метода продолжения решения по параметру;

- исследование устойчивости полученных решений на основе второго метода Ляпунова;

- разработка и программная реализация численного метода решения систем дифференциальных уравнений с произвольными, в том числе нелинейными, граничными условиями на основе методов Бубнова–Галеркина и продолжения решения по параметру.

Методы исследования и достоверность полученных результатов. В качестве основных методов исследования в диссертационной работе применялись методы, принятые в теории нелинейных колебаний. В одномодовом приближении решения получены на основе методов возмущений и усреднения, решение с учетом нескольких форм колебаний получено методом Бубнова–Галеркина. В отдельных случаях получено аналитическое решение задачи. Для численного построения амплитудно-частотных и фазочастотных характеристик использовался метод продолжения решения по параметру. Исследование устойчивости полученных решений выполнено на основе второго метода Ляпунова с использованием QR алгоритма.

Достоверность научных результатов подтверждается корректным использованием математического аппарата, адекватного решаемым задачам, удовлетворительным совпадением теоретических и экспериментальных результатов, опытом практического использования разработок в производственной и научной областях.


загрузка...