Обоснование параметров малогабаритных транспортных средств сельскохозяйственного назначения с широкими функциональными возможностями (15.06.2009)

Автор: Дзоценидзе Тенгизи Джемалиевич

Представляется необходимым на основе проведение теоретических исследований разработать концепцию создания МТС, определить функциональное назначение машин и их технические характеристики, условия эксплуатации и экологии взаимодействия с окружающей средой, создание чертежно-конструкторской документации (ЧКД) на опытные образцы МТС и проведение экспериментальных исследований. При этом семейство МТС должно быть приспособлено к использованию в качестве личного, семейного транспорта для обеспечения большей мобильности населения.

Во второй главе рассмотрены и исследованы предпосылки для создания и производства грузовых автомобилей сельскохозяйственного назначения. Исследование тенденций использования автотранспорта в сельскохозяйственном производстве показало, что автомобильный транспорт перевозит большую номенклатуру грузов, а в себестоимости сельскохозяйственных продуктов транспортные расходы составляют 15…40%. Автомобильный транспорт в сельскохозяйственном производстве играет важнейшую, а в период уборки урожая – решающую роль. В большинстве случаев сельскохозяйственный автотранспорт работает в тяжелых дорожных условиях.

Максимальная потребность в автомобилях приходится на период вывозки урожая. Сегодня в основном используются автомобили общего назначения (производства ОАО «ГАЗ», АМО «ЗИЛ», МАЗ, ОАО «КамАЗ»), а также специализированный подвижной состав, созданный с применением серийных шасси. Однако применяемый транспорт больше подходит крупным хозяйствам, хотя автомобили общего назначения имеют неудовлетворительную проходимость по местности, полевым и грунтовым дорогам в периоды дождей и осенне-весенней распутицы, а также по снегу. Автомобильная техника высокой проходимости в сельское хозяйство не поступает, так как выпускается мелкими сериями для военных нужд и не отличается высокой эффективностью на селе. Следовательно, для сельского хозяйства, помимо автомобилей общего назначения и тракторов с прицепами, нужны специальные транспортные средства, разработанные с учетом особенностей эксплуатации в условиях сельского хозяйства.

Обеспечение транспортными средствами (грузовыми автомобилями) КФХ остается низкой – в среднем по стране 1 автомобиль на два хозяйства, при неравномерном распределении по регионам (Тамбовская обл. – 0,9 автомобиля на 1 КФХ, из них полностью самортизированы – 0,33; Курская обл. – 0,6 и 0,37, соответственно). Применение изношенной техники увеличивает себестоимость продукции, а значительные ресурсы приходится направлять на ремонт. Сегодня важно понимать, что в области транспортного обеспечения КФХ и ЛПХ необходимо не только наращивание транспортных мощностей, но и рост годовой загрузки и выработки транспортных средств по сравнению с затратами на их приобретение и эксплуатацию. Это невозможно реализовать без создания и производства грузопассажирских и грузовых автомобилей высокой проходимости и различной грузоподъемности, приспособленных к условиям круглогодичной эксплуатации на селе. Иными словами, для КФХ и ЛПХ нужны именно малогабаритные малотоннажные транспортные средства высокой проходимости, грузоподъемностью от 300 кг (грузоподъемность большинства легковых автомобилей) - до 1,0…2,0 т. Верхний предел грузоподъемности в большей степени востребован в КФХ с земельными угодьями около или более 100 га и товарными ЛПХ. Для трети КФХ (площадь обрабатываемых угодий до 60 га – около 30% хозяйств) и для подавляющего большинства ЛПХ (площадь обрабатываемых угодий 0,8 га – около 50% хозяйств) грузоподъемность МТС можно ограничить 800 кг. С другой стороны, низкий уровень механизации в КФХ и, особенно, ЛПХ подтверждает необходимость создания МТС с дополнительными функциональными возможностями для выполнения вспомогательных операций на сельском подворье.

- производительность одного автомобиля в выполненных тонно-километрах за один автомобиль-час пребывания на линии:

, ткм/авт-ч. (1)

- грузоподъемность автомобиля, т;

- коэффициент использования пробега при производительности в тонно-километрах и определяется как отношение пробега автомобиля с грузом к общему пробегу (к сумме пробегов с грузом и без груза).

для обоих автомобилей одинакова, а остальные показатели в общем случае разные, получаем

, после соответствующих преобразований получим

уменьшается, уже другой автомобиль приобретает преимущество по производительности (рис. 1, а).

при условии:

и возникает необходимость оценить, в каких случаях применение автомобилей-самосвалов может быть более выгодным (рис. 3).

Для обеспечения сельхозпроизводителей транспортными средствами ранее были разработаны опытные образцы разнообразных машин. Например, в виде 1,5 тонных фургонов НАМИ-0267 (рис. 4). Кроме того, было разработано семейство транспортно-технологических автомобилей НАМИ-0342 типа 4х4 грузоподъемностью 0,5 т (рис. 5). Эти автомобили могли работать в сельском хозяйстве, они были оборудованы передним и задним валами отбора мощности, специальными устройствами для агрегатирования разного рода технологического оборудования. Автомобиль по своим параметрам соответствовал тракторам класса тяги 0,2…0,6 т и мог работать со шлейфом навесных сельскохозяйственных орудий от тракторов Т-18 и Т-25.

Рис. 2. Себестоимость перевозок автомобилями 1 и 2 в зависимости от использования пробег

Рис. 4. Автомобиль-фургон НАМИ-0267 грузоподъемностью 1,5 т.

Рис. 5. Транспортно-технологический автомобиль НАМИ-0342 грузоподъемностью 0,5 т.

Рис. 6. Транспортно-технологический автопоезд КАЗ-4540.

В 70-х гг. ХХ века возникла необходимость разработки и организации производства транспортно-технологических автомобилей, способных круглогодично работать на грунтовых дорогах и в полевых условиях со специальными и специализированными прицепными средствами. Согласно расчетам, наиболее массовым должен был быть автопоезд с полной массой не более 24 т, в составе автомобиля-тягача с полной массой до 12 т и грузоподъемностью до 6 т, и двухосного прицепа грузоподъемностью до 5…6 т (рис. 6). Серийное производство семейства КАЗ-4540 было начато в 1984 году. Эксплуатация показала, что производительность транспортных работ в сельском хозяйстве возросла примерно в 2 раза при снижении расхода топлива и уменьшения вредного воздействия на окружающую среду.

Путем исследования научных основ создания грузовых автомобилей сельскохозяйственного назначения установлено, что одним из основных способов повышения эффективности транспортных процессов является применение грузовых автомобилей высокой проходимости, отличающихся вариантностью исполнения и комплектации (наличием модификаций); широким диапазоном регулирования скорости; шинами с регулируемым давлением воздуха; возможностью применения навесного оборудования и современными дизайнерскими решениями.

В третьей главе разработаны научные основы создания семейства МТС. Анализ подходов и реализованного опыта по созданию универсальных машин сельскохозяйственного назначения и мобильных энергетических средств (МЭС) показал, что попытки повторить путь создателей Унимог, равно как и перейти на широкомасштабное применение МЭС закончились неудачей. Однако создаваемое семейство МТС с широкими функциональными возможностями в виде автомобиля высокой проходимости, способного выполнить вспомогательные операции в КФХ, ЛПХ и сельском подворье - проще и дешевле для реализации идеи универсализации.

Изучение возможных аналогов иностранного производства и отечественного опыта позволяет заключить, что рыночная ниша транспортных средств с широкими функциональными возможностями для КФХ и ЛПХ грузоподъемностью до 2 т пустует, прямых аналогов таких машин нет, и годовая потребность отечественного рынка может составить до 30 тыс. штук в год. На этапе конструирования одним из направлений теоретических исследований является разработка математической модели динамики движения МТС по деформируемому грунту. Для нашего случая исследования к разрабатываемой математической модели можно сформулировать следующие основные требования: соответствие внешних воздействий в математической модели и условиям реальной эксплуатации; учет переменного характера сил сопротивления качению по мостам автомобиля из-за образования колеи при движении по деформируемым грунтам; возможность динамического анализа системы в частотном диапазоне, включающем все характерные режимы нагружения трансмиссии и подвески от дорожных неровностей (обычно, 0…40 Гц).

Была разработана нелинейная математическая модель МТС с колесной формулой 4х4, расчетная динамическая схема которой представлена на рис. 7.

Система дифференциальных уравнений, описывающая динамику движения МТС, имеет вид (3), где:

- моменты инерций, соответственно, вращающихся масс двигателя; ведомой части сцепления; деталей первичного вала коробки передач и части вращающихся деталей, связанных с ним, приведенные к первичному валу; деталей вторичного вала коробки передач и части

Рис. 7. Расчетная динамическая схема МТС

вращающихся деталей, связанных с ним, приведенные к вторичному валу; вращающихся частей колесных дисков; колес и резинокордной оболочки шин переднего и заднего мостов автомобиля; переднего и заднего мостов, поворачивающихся под воздействием реактивных моментов; подрессоренной массы автомобиля, кг·м2;

- подрессоренная масса автомобиля и неподрессоренные массы соответственно переднего и заднего мостов, кг;

- суммарные крутильные жесткости, соответственно, демпфера крутильных колебаний; валов раздаточной коробки и карданных валов привода переднего и заднего мостов автомобиля; продольные и вертикальные жесткости рессор и шин переднего и заднего мостов автомобиля; суммарные крутильные жесткости резинокордной оболочки шин переднего и заднего мостов автомобиля; суммарные крутильные жесткости рессор при угловых колебаниях мостов в продольной плоскости,

Н·м·рад-1;

- суммарные зазоры в соединениях деталей коробки передач, приведенных к первичному валу; редукторов переднего и заднего мостов автомобиля; в тягово-сцепном устройстве, соответственно, м;

- общее передаточное число коробки передач и раздаточной коробки;

- передаточное число главной передачи ведущих мостов;

- радиусы качения колес ведущих мостов автомобиля, м;

- координаты центра тяжести подрессоренной массы автомобиля, м;

- угловые обобщенные координаты масс;

- линейные обобщенные координаты соответствующих масс в вертикальном направлении, м;

- линейные обобщенные координаты соответствующих масс в горизонтальном направлении, м;

- высоты неровностей микропрофиля дороги, м;

- ход рейки топливного насоса, м;


загрузка...