Развитие теории и комплексные методы повышения эффективности функционирования электрооборудования горных предприятий (15.06.2009)

Автор: Дорошев Юрий Степанович

, (qк = 10 – 50).

, (qк = 70 – 150). (12)

Максимальная разница между сечениями кабелей, полученными по данным формулам и регламентированными ПУЭ для номинальных параметров не превышает 1,7%.

Основываясь на ранее проведенных нами исследованиях, была разработана методика выбора оптимальных параметров высоковольтных гибких кабелей типов КГЭ: сечений токоведущих жил в зависимости от фактических токовых нагрузок, сезонной температуры окружающей среды региона, фактического срока службы и длины кабелей:

1. Определяется необходимая температура нагрева токоведущих жил ?ж, обеспечивающая старение изоляционных резин до предельного состояния за фактический срок службы tсл (дней), обусловленный механическими повреждениями:

Данная формула получена из расчета снижения эластичности (относительного удлинения) изоляционных резин при разрыве в процессе теплового старения до 100%, обеспечивающего безопасные условия эксплуатации и определенного при номинальной температуре среды.

2. Для повышения эффективности использования кабелей предлагается использовать две навески – для зимнего и летнего сезонов. Расчетная температура окружающей среды ?с определяется для зимней и летней навесок кабелей как сумма среднемесячной температуры ?см самого теплого месяца сезона и среднеквадратического отклонения ?с от этой температуры по климатическим справочникам для данного региона. Данное правило учитывает повторяемость появления аномальной температуры, т.е. превышающей ?см + ?с , с вероятностью не ниже 0,2.

3. Эффективные сечения qк экскаваторных высоковольтных кабелей для данного диапазона сечений определяются по формулам (12).

4. Вычисляют экономически целесообразные значения длины экскаваторного кабеля из условия минимума капитальных и эксплуатационных затрат:

где А, В, С – постоянные для данного экскаватора коэффициенты;

tпр – время простоя экскаватора при его переключении.

На рис.7 представлены графики зависимостей длин кабелей, навешиваемых на карьерные экскаваторы, от сечения токоведущих жил и нормы амортизации (срока службы). Верхний график соответствует сроку службы 1 год.

Рис.7. Оптимальные длины экскаваторных гибких кабелей в зависимости от их фактических сроков службы и технико-экономических параметров угольного разреза

5. Получаемая оптимальная длина кабельной линии должна быть увеличена на длину участка кабеля, прокладываемого в направлении, поперечном фронту горных работ (например, с уступа на уступ).

6. Общая длина кабельной линии должна удовлетворять условию обеспечения допустимого уровня напряжения в наиболее тяжелом для него режиме работы (при пуске). Нами обосновано, что экономически в 10 – 20 раз более целесообразнее обеспечивать допустимые потери напряжения в сети путем изменения сечения воздушных линий электропередач, а не кабелей. Проверка параметров сети электроснабжения - сечений qл и длины Lл воздушных линий по допустимой потере напряжения при пуске (до 42% от Uном) осуществляются по формулам:

где Iн – номинальный ток синхронного двигателя, А; Lк – общая длина кабеля, км; Lл – длина ЛЭП от источника питания до приключательного пункта, км.

Обоснование научно-методических положений по определению и контролю удельных потерь электроэнергии в распределительных сетях карьеров.

Передача электроэнергии по распределительным сетям сопровождается потерями активной мощности в резистивных элементах. Фундаментальные исследования в этой области проводили Г.М. Каялов, С.Е. Гродский, Б.А. Князевский, В.С. Лившиц, Н.В. Копытов, А.А. Ермилов, И.М. Маркович, Ю.Л. Мукосеев, А.А. Федоров, В.С. Виноградов, Л.В. Гладилин, А.М. Маврицын, Н.А. Мельников, Б.П. Белых, Б.И. Заславец, С.А. Волотковский, В.И. Щуцкий, В.Н. Винославский, В.В. Дегтярев, Ю.С. Железко, И.В. Жежеленко, Н.В. Гончарюк, Ю.И. Галактионов и др.

Тенденция роста энергопотребления обязательным условием ставит требование соблюдения рациональных режимов использования электроэнергии и минимизации потерь. Абсолютные потери мощности, определяемые для конкретной электроустановки или системы, не позволяют судить об эффективности мероприятий по снижению потерь. Универсальной характеристикой в этом плане могут быть относительные (удельные) потери мощности (энергии), позволяющие регламентировать уровень потерь для различных электрических систем. Удельные потери каждого элемента системы могут быть определены по отношению к мощности головного элемента с использованием коэффициента потерь элемента системы kni = 1 – ?i , где ?i - КПД элемента системы.

?????????????

Ѓ,тивной и реактивной мощности и топология сети. Задача определения потерь электроэнергии встречается в различных постановках, и в общем случае является сложной многоаспектной проблемой.

В горной промышленности распределительные сети не являются сложно-разветвленными. При необходимости они могут быть легко эквивалентированы к радиальным линиям, предприятие же в основном интересует доля потерь в общем расходе электроэнергии, учтенной счетчиком на фидерной линии.

Достаточно точные методы расчета потерь предложены Г.М.Каяловым. Если известны пределы изменения нагрузок Р и Q, то целесообразно определять коэффициенты формы для этих пределов, суммируя затем потери для всего промежутка времени Т. Однако в формулах присутствует эквивалентное значение линии R, которое при неизменной топологии сети изменяется как в зависимости от изменения нагрузки, так и изменения температуры окружающей среды. При эквивалентировании сети по активным сопротивлениям изменение температуры нагрева проводников только на 10 0С приводит к изменению сопротивления на 4,04 %.

Значительно в меньшей степени зависит от нагрузки и температуры окружающей среды КПД элемента системы - КПД электроустановок изменяется незначительно при достаточно широком отклонении их режима от номинального. При этом потери электроэнергии изменяются значительно – пропорционально канализируемой мощности. Кроме того, невозможно использовать абсолютные значения параметров для сравнения эффективности работы различных по рабочим параметрам электроустановок, сетей и систем электроснабжения. В этом случае появляется возможность создания измерительного комплекса, содержащего программируемые элементы, с помощью которого можно регистрировать как текущие, так и среднеквадратические значения относительных потерь электроэнергии в исследуемой сети или электроустановке.

Критерий эффективности использования электроэнергии по удельным потерям может быть использован для выявления очагов повышенных потерь, сравнения вариантов в технических расчетах. Отсутствие информации о действительных текущих потерях электроэнергии способствует росту безучетных потребителей и увеличению коммерческих потерь. Кроме того, общая картина рационального распределения электроэнергии на предприятии затушевывается, невозможно выявить очаги повышенных потерь без детальных технико-экономических расчетов, что не всегда возможно в силу указанных выше причин. Таким образом, наряду с развитием теоретических методов расчета потерь электроэнергии, возникла настоятельная необходимость в создании оперативных систем технического, а также коммерческого учета потерь электроэнергии. Наличие подобных систем позволит регламентировать на отдельных энергоемких производствах наряду с удельными нормами потребления электроэнергии удельные нормы потерь электроэнергии.

Разрабатываемые системы измерения текущих потерь мощности основаны на применении устройств телемеханики, позволяющих измерять потери вычитанием активной мощности в начале и конце линии. Создание системы оперативного технического учета потерь представляется целесообразным с использованием существующей и минимальным количеством дополнительной измерительной аппаратуры на основе предложенного в диссертации способа определения относительных потерь электроэнергии (АС СССР №1339455). Сущность способа заключается в том, что измеряют значение относительных потерь электроэнергии в линии на головном участке сети:

коэффициент формы графика нагрузки; Rл – эквивалентное активное сопротивлении линии; сos? – средневзвешенное значение коэффициента мощности сети.

Полагая W = РТ, где Р – среднее значение активной мощности, получаем:

Фактические значения коэффициента b были получены в результате измерений режимных параметров на угольном разрезе «Павловский-2». Для различных экскаваторов значения b лежат в пределах от 0,005 до 0,1 и для конкретного экскаватора определяется в наибольшей степени значением коэффициента формы графика нагрузки kф. Поскольку исследованиями школы Б.П.Белых доказано, что для конкретного типа экскаватора и вида работ kф является величиной статистически постоянной, также можно говорить и о статистически постоянном значении коэффициента b для конкретных видов экскаваторов и работ (характерного графика нагрузки данной фидерной линии). Значения kф и сos? для данной фидерной линии должны быть определены экспериментально. В этом случае мгновенные абсолютные потери легко определяются по канализируемой мощности на головном участке сети и могут быть учтены счетчиком потерь аналогично счетчику активной энергии, а относительные потери за промежуток времени Т – на основании затраченной за этот промежуток времени активной энергии. Созданный в стране агрегатный комплекс электроизмерительной техники (АСЭТ) позволяет реализовать выражения с помощью унифицированных функциональных узлов либо посредством цифровых микропроцессоров, например, контроллера TMS03Cоntrol или S7-200 производства SIEMENS. Данное решение представляется наиболее целесообразным, поскольку исключает необходимость индивидуальной разработки приборов и дает возможность перейти к типовому проектированию. В диссертационной работе предлагается один из возможных вариантов системы оперативного учета потерь электроэнергии, составленной из унифицированных элементов АСЭТ. При этом эквивалентирование сети возможно как по величинам активного сопротивления элементов сети, так и по величинам предлагаемого в работе коэффициента потерь kni = 1 – ?i.

Для последовательно соединенных элементов системы можно написать:

)(1- ?n-1) ?Рn

?Р1 = Р(1-?1),

?Р2 = (Р-?Р1) (1-?2),

?Р3 = (Р-?Р1-?Р2)(1- ?3),

…………………………

)(1- ?n).

Общие потери определятся по формуле:

Для двух параллельно включенных элементов системы справедливо следующее:

Р = UIсos?;

?P1=I1U(1-?1) сos?1= I1U сos?1kn1;


загрузка...