Изменчивость в культуре картофеля (Solanum tuberosum L.) in vitro и возможности её использования в селекции и семеноводстве (15.03.2010)

Автор: Леонова Нина Семёновна

3.2. Экспрессия генов, контролирующих общие белки и изоферменты, в культуре in vitro

Селекция картофеля традиционно ведётся по фенотипическим признакам, даже несмотря на бурное развитие молекулярно-генетических маркеров (Hosaka et.al.,1994). Хотя использование молекулярных маркеров в культуре in vitro, где мало фенотипических маркерных признаков, могло бы дать возможность более глубокого понимания происходящих биотехнологических процессов. В наших исследованиях мы попытались использовать в качестве маркеров электрофоретические спектры общих белков и изоферментов.

3.2.1. Изменение экспрессии генов, контролирующих общие белки в культуре in vitro под действием фитогормонов

$a$gdЎt

?????????

?????????

?????????

?????????

?????????

?????????

????????

,оцессах дифференциации, дедифференциации и редифференциации, а также в онтогенезе каллусной культуры. При селекционных процессах очень важно знать, как ведут себя эти маркерные признаки на разных стадиях дифференциации организма в культуре in vitro. Именно на этот вопрос мы попытались ответить в своих исследованиях, изучая полиморфизм растворимых белков картофеля в культуре in vitro.

В проведенных исследованиях нами было установлено, что электрофоретический спектр водорастворимых белков интактных растений картофеля, выращенных в культуре in vitro, состоит из 42-45 компонентов, а у каллусов - только из 22-25. Для удобства рассмотрения мы условно разделили их на 3 зоны (схема 1). А – быстро подвижные компоненты (БК), В - средне подвижные компоненты (СК), С - медленно подвижные компоненты (МК).

В белках каллусов, как было сказано, содержится 20-25 компонентов, причем полностью отсутствуют белки зоны А (быстроподвижные компоненты) и всего 3 компонента в зоне В - среднеподвижных. У регенерантов, полученных из этих каллусов, белковый спектр полностью восстанавливается и содержит компоненты всех трех зон. Двенадцать компонентов в зонах В и С являются общими для белков исходных растений, регенерантов и каллуса (схема 1). Компонентные составы белка из каллуса Мутанта - 987 и сорта Xenia сходны и отличаются только по двум медленноподвижным компонентам (40 и 41), присутствующим у сорта Xenia (схема 1).

Сортоспецифичность компонентного состава белков, выявленная в интактных растениях, сохраняется и в каллусе. Различия между сортами чаще всего проявляются на уровне интенсивности отдельных компонентов белкового спектра. Однако некоторые сорта имеют фракции белка, характерные именно этому сорту. При сравнении электрофоретических компонентов белка у каллусов, выращенных на средах

Схема 1. Электрофоретические спектры белка картофеля

Рис 3. Электрофоретические спектры белка исходных форм и каллусов, выращенных на разных средах. 1-4 – сорт Приекульский ранний; 6-9 – сорт Берлихенген; 11-14 - сорт Xenia; 15-18 – Мутант 987; 1,6,11,15 – исходное растение; 2,7,12,16 – каллус на каллусной среде; 3,8,13,17 – каллус на регенерационной среде; 4,9,14,18 – каллус на среде без гормонов.

с разным фитогормональным составом, установлено влияние последнего на количественный и качественный состав белка (рис. 3).

В экспериментах по изучению влияния ауксинов на компонентный состав белка подтвердилась основная особенность каллусной культуры: в электрофоретических спектрах белка отсутствуют компоненты быстромигрирующей зоны А и существенно меньше компонентов в зоне среднеподвижных компонентов (зона В). Сортоспецифичные компоненты проявляются на всех средах выращивания (рис.4).

Рис. 4. Электрофоретический спектр белка каллусов картофеля, выращенных на средах с разными ауксинами. 1-4 - на среде с 2,4Д 2 мг/л; 5-8 - на среде с ИУК 0,5мг/л; 9-12 - на среде с HУK 10 мг/л; 13-16 - на среде с НУК 8 мг/л + кинетин 2 мг/л; 1,5,9,13 - сорт Хеniа; 2,6,10,14-сорт Приекульский; 3,7,11,15 – Мутант-987; 4,8,12,16 - сорт Седов.

В исследованиях было установлено также, что это сокращение электрофоретического спектра белка в каллусной культуре не зависит от фитогормонального состава сред, на которых выращивается данная каллусная культура, а зависит от стадии дифференциации. При анализе электрофоретических спектров белков регенерантов, полученных из этих каллусных культур, установлено, что их компонентный состав восстанавливается и чаще всего соответствует сортовому спектру исходного растения, хотя иногда могут выявляться изменения в одном или нескольких компонентах или в интенсивности их проявления.

Полученные данные указывают на то, что отмеченные выше различия в спектрах белков каллуса картофеля обусловлены репрессией и дерепрессией, что можно рассматривать как эпигенетические изменения экспрессии генов, контролирующих синтез белков. Замолкание в каллусах большого числа генов сменяется их активацией и полным восстановлением спектра белков у регенерантов. При восстановлении белкового спектра сортоспецифичность в экспрессии генов, контролирующих синтез белка, сохраняется.

Динамика аминокислотного состава растворимого белка картофеля в культуре in vitro

При селекции картофеля на клеточном уровне для более полного использования генетического потенциала необходимо изучить как можно больше физиологических и биохимических процессов, которые проходят и на стадии каллусной культуры, и в период морфогенеза. Это необходимо, прежде всего, для того, чтобы знать, на каких этапах можно влиять на генотип картофеля с целью его изменения, и как с помощью молекулярно-генетических маркеров контролировать сохранность его сортотипичности при меристемном оздоровлении от вирусной инфекции и при дальнейшем микроклональном размножении. Такими биохимическими маркерами могли бы быть не только электрофоретические спектры белков, но и аминокислотный состав суммарного белка растений (Конарев, 1983). Поэтому мы считали необходимым исследовать состав аминокислот и их соотношение на разных стадиях дифференциации в культуре in vitro картофеля.

Обнаружено, что аминокислотный состав общего белка исходных форм, выращенных в асептических условиях, каллусов и регенерантов в основном сходен (рис. 5, 6). Но имеются некоторые отличия, характерные только для каллусной культуры. В каллусной культуре есть тирозин (от 2 до 5%), а в интактных растениях исходной формы и у растений регенерантов он отсутствует или наблюдается только его следовое количество. Это установлено на каллусных культурах четырех изученных нами сортов (рис. 7). В интактных растениях исходных форм сорта Xeniа и мутантной формы - М-987 и у их регенерантов отсутствует 3 аминокислоты: цистеин, метионин и тирозин из числа исследованных нами аминокислот (рис. 5, 6, 8), а в каллусной культуре отсутствуют только две: цистеин и метионин, а тирозин присутствует. Но известно, что тирозин получается из фенилаланина, которого в интактных растениях как в исходных формах, так и у регенерантов, больше, чем в каллусной культуре почти в 2 раза. Профили кривых соотношения аминокислот исходных растений, выращенных в резко отличающихся условиях (теплица и культура in vitro), оказались близкими (рис. 9), но в условиях теплицы в листьях растений наблюдалось повышенное содержание аспарагина, глутамина и аргинина по сравнению с растениями, выращенными в пробирочной культуре.

В исходных формах, вне зависимости от условий выращивания, также отсутствуют 3 аминокислоты из исследованных. Хотя электрофоретические спектры белков исходных растений и их каллусов резко отличаются, содержание аминокислот в белках этих форм существенно не различается. Несмотря на то, что компонентный состав белков каллуса гораздо беднее, чем у исходной формы и регенерантов,

Рис. 5. Аминокислотный состав общего белка формы Мутант-987.

аминокислотный состав растворимого белка каллусов даже на 1 аминокислоту (тирозин) больше.

Вероятно, специфика экспрессивности белков у каллусной культуры, имеющей только половинный состав компонентов белка исходных растений и регенерантов, обусловлена не отсутствием соответствующих аминокислот для синтеза белка, а отсутствием экспрессии генов, контролирующих синтез данных форм белка в каллусной культуре, или из-за отсутствия их функции на данной стадии онтогенеза.

Итак, на стадии растений-регенерантов функции данных белков восстанавливаются, и восстанавливается компонентный состав белков, характерный данному виду и сорту, хотя иногда это восстановление происходит с некоторыми отличиями. У регенерантов восстанавливается и аминокислотный состав, т.е. вместо тирозина выявляется повышенное количество фенилаланина.

Рис. 6. Аминокислотный состав общего белка сорта Xenia.

Рис.7. Аминокислотный состав общего белка каллусов трех сортов и одной формы картофеля.

Рис. 8. Аминокислотный состав общего белка листьев регенерантов сорта картофеля Xenia и формы Мутант-987.

Рис. 9. Аминокислотный состав общего белка листьев исходных растений, выращенных в условиях теплицы и in vitro.

Можно сделать вывод, что аминокислотный состав растворимого белка картофеля запрограммирован генетически на всех уровнях дифференциации в культуре in vitro и мало поддается изменениям в зависимости от условий выращивания. Обратимость аминокислотного состава при переходе от исходного растения к каллусной культуре и затем к регенеранту, вероятно, также носит эпигенетический характер.

3.2.2. Экспрессия изоферментов в каллусах и исходных интактных растениях картофеля

Изоферментами, согласно международной классификации, называются генетически детерминированные множественные молекулярные формы ферментов, выявляемые у особей одного и того же вида, обладающие одинаковой субстратной специфичностью, но различающиеся своей первичной структурой и физико-химическими свойствами: подвижностью в электрическом поле, сродством к субстрату и ингибиторам.

Изоферменты представляют собой простые, наиболее доступные и удобные маркеры для характеристики активности контролирующих их структурных генов (Левитес, 1986). Это находит широкое применение в решении многих вопросов в самых разных областях генетики. Изоферменты позволяют маркировать не только контролирующие их локусы, но и сцепленные с ними блоки генов, что имеет большое значение для проведения популяционно-генетических и селекционных экспериментов на животных и растениях. Поэтому при использовании данного метода мы ставили своей целью проследить изменения экспрессии изоферментов на разных стадиях онтогенеза в культуре картофеля in vitro и влияние фитогормонального состава сред культивирования на экспрессию изоферментов.

Алкогольдегидрогеназа (АДГ) находится в растворимой фракции цитоплазмы (Sсandalios, 1971) и является одним из ферментов спиртового брожения, завершающего гликолиз в анаэробных условиях. Образующийся спирт быстро включается в обменные реакции. На различных растительных тканях показано, что этанол превращается в соединения типа органических кислот, аминокислот, сахаров, липидов (Гринева, 1975). В настоящее время известно, что АДГ у растений контролируется двумя, и даже тремя, локусами, которые увеличивают свою активность при анаэробных условиях.

На электрофореграмме, полученной из каллуса картофеля (рис. 10), выращенного на среде с 2,4Д, АДГ выявляется в виде одного анодного изофермента. АДГ не выявляется в интактных зеленых растениях и каллусах, выращенных на среде с ауксином НУК. Нa среде с ауксинами 2,4Д + НУК активность АДГ ниже, чем на среде, содержащей только 2,4Д.


загрузка...