Исследование и создание композиций на основе порошков металлов, их оксидов и углерода для получения фасонных заготовок с заданными свойствами (14.09.2009)

Автор: Довыденков Владислав Андреевич

– вязкости композиции и связующего;

для наполнителя – порошка стали 316L;

– объемное содержание твердой фазы;

– критическое объемное содержание твердой фазы, при котором композиция теряет текучесть.

Для композиций, в которых твердая фаза состоит из двух компонентов (металлический порошок + оксид) при условии, что размеры частиц оксида значительно (на порядок) меньше размеров частиц металла, относительная вязкость может быть рассчитана согласно нашим аналитическим исследованиям по зависимости (2). В этом случае смесь «оксид – связующее» играет роль нового связующего для металлической фазы.

– объемное содержание металлического порошка в композиции в целом;

– объемное содержание оксида в системе «оксид – связующее»;

– критические объемные содержания металлического порошка и оксида, соответственно.

Другие обозначения аналогичны обозначениям уравнения (1).

) будет составлять

приняты 0,605 и 0,55, соответственно, на основе анализа наших исследований и имеющихся опубликованных экспериментальных данных.

Отметим, что ход кривых на рис. 2 согласуется с известным положением о том, что вязкость МИМ-фидстоков и, соответственно, критическая величина общего объемного содержания твердой фазы могут регулироваться за счет помещения в промежутках между частицами крупной фракции более дисперсных частиц.

при различной степени наполнения

резко изменяется. Для обеспечения стабильных реологических свойств композиций при формовании необходимо выдерживать объемное содержание твердой фазы в пределах 0,5/0,6.

к массе компонентов в единичном объеме осуществляется с помощью системы уравнений:

– масса и плотность связующего;

– масса и плотность оксида;

– масса и плотность порошка металла.

Система (3) должна удовлетворять следующему физическому равенству:

Дополняющим условием, уточняющим фазовый состав композиций, является необходимость соблюдения баланса по углероду, количество которого должно быть достаточным для восстановления оксидов и остаточного содержания в сплаве. Исходя из проведенных нами исследований, на восстановление 1 кг оксида требуется 0,169 кг углерода. Обозначая коксовое число связующего через k, устанавливаем соотношение между массой оксида и массой связующего:

, полученную из исследований вязкости, определяет область возможного существования композиций. В данной главе разработаны математические модели, по которым получены табличные результаты расчетов и составлены аналитические зависимости для оптимизации фазового состава композиций на примере железа и меди.

Анализ литературных данных, результаты предварительных экспериментов и расчетов позволили сделать вывод, что реакционный размол как метод получения высокодисперсной твердой фазы в композициях, предназначенных для получения фасонных заготовок, целесообразно применять для материалов на основе железа и нецелесообразно для материалов на основе меди, поскольку при реакционном размоле меди преобладают процессы консолидации частиц, а при реакционном размоле железа – процессы деконсолидации.

Методы расчетов фазового состава композиций, состоящих из размолотого порошка железа, его оксида и ФФС, аналогичны изложенным ранее с учетом необходимости внесения поправок на изменение количества углерода и кислорода при реакционном размоле.

. В дальнейшем, для исследований, использовались композиции, состав которых приведен в табл. 1.

Таблица 1

Исходный состав композиций для реакционного размола

состава Содержание компонентов, % масс.

порошок меди ПМС-1 порошок

алюминия

ПП-1 порошок

оксида (II) меди порошок графита

1 96,45 0,5 2,80 0,25

2 99,25 0,5 - 0,25

В третьей главе приведены результаты исследований технологических параметров термической обработки исследуемых композиций и эволюции их фазового состава. Эти параметры имеют специфику в зависимости от назначения композиций. Для композиций, предназначенных для получения фасонных заготовок, в процессе термической обработки осуществляется разложение связующего и восстановление оксидов высокодисперсным углеродом. Если композиции предназначены для получения дисперсно-упрочненных материалов с применением реакционного размола, термическая обработка должна обеспечить завершение окисления алюминия и восстановление оксида меди углеродом.

Исследования по удалению связующего (ФФС) осуществлялись путем нагрева образцов в виде шайб с наружным, внутренним диаметром и высотой 31х15х4,5мм. В качестве металлического наполнителя использовался порошок карбонильного железа со средним размером частиц 4-6 мкм, а в качестве оксидной фазы – оксид железа (Fe2O3) со средним размером частиц в пределах 0,3 – 0,4мкм, что соответствует установленным во второй главе требованиям по соотношению дисперсности металлической и оксидной фаз. При нагреве в интервале температур 700…800 оС в результате деструкции связующего в межчастичном пространстве выделяется углерод, количество которого равно коксовому числу смолы. Установлено, что допустимые скорости нагрева, не приводящие к образованию трещин и других дефектов, примерно на порядок выше, чем для МИМ-фидстоков на основе термопластов. При нагреве образцов на воздухе имеют место большие потери углерода, а также плохо контролируемое окисление образцов. В последующем этот технологический вариант не применялся и нагрев производился без доступа воздуха.

Кроме разложения смолы в интервале температур 700…800 оС, имеет место частичное восстановление оксида железа, а также увеличение плотности за счет интенсивной объемной усадки, составляющей в этом интервале температур 13%, 18% и 24% при температурах 700 ?С, 750 ?С и 800 ?С, соответственно. Степень восстановления, определяемая как отношение количества удаленного кислорода к его первоначальному содержанию, при этих же температурах нагрева для прессовок из композиции №4 (табл. 2) составляет 0,19; 0,4 и 0,87. Дальнейшими экспериментами установлено, что при нагреве до 900 ?С и выше, вплоть до температуры 1100 ?С, достигнуть полного восстановления не удается в связи с интенсивным спеканием, сопровождаемым зональным обособлением усадки с образованием закрытых пор, из которых затруднено удаление газовых продуктов реакции восстановления.

Таблица 2

Степень восстановления оксидов в вакууме

при температуре 800 ?С

Номер композиции 1 2 3 4


загрузка...