Моделирование процессов управления рыночным равновесием с применением нечетко-возможностных математических методов (13.12.2010)

Автор: Радионов Николай Васильевич

РАДИОНОВ Николай Васильевич

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ УПРАВЛЕНИЯ

РЫНОЧНЫМ РАВНОВЕСИЕМ

С ПРИМЕНЕНИЕМ НЕЧЕТКО-ВОЗМОЖНОСТНЫХ

МАТЕМАТИЧЕСКИХ МЕТОДОВ

Специальность 08.00.13 – Математические

и инструментальные методы экономики

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора экономических наук

Санкт-Петербург – 2011

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования "Санкт-Петербургский государственный университет экономики и финансов"

Научный консультант –

Официальные оппоненты:

Ведущая организация –

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В современной макроэкономической теории, базирующейся в основном на фактах реальной экономической жизни, при исследовании процессов формирования совокупного спроса и предложения прочно утвердился системно-научный или модельный подход к решению важнейшей задачи экономики – согласованию ограниченных производственных возможностей и неограниченных потребностей людей. Логическим следствием применения такого подхода явилась возможность предвидеть развитие исследуемых процессов и оценивать возможный результат, исходя из известных условий и логики поведения элементов экономической системы.

Растущая глобализация экономики, которая наблюдалась всю вторую половину ХХ века, вместе с углубленными исследованиями и обобщением базовых макроэкономических моделей классической и кейнсианской школ, накоплением эмпирических данных и охватом макроэкономической теорией новых сфер экономической жизни – все это постепенно формирует новый взгляд на роль макроэкономики в российской экономической науке. В настоящее время макроэкономическая теория становится одним из важнейших инструментов в процессе принятия не только национальных и глобальных (макроуровень), но и региональных (мезоуровень) и даже локальных (микроуровень) социально-экономических решений. Эти тенденции привели к серьезному теоретическому переосмыслению требований к макроэкономическим моделям.

Очевидно, что, независимо от формы описания модели, результативность модельного подхода зависит от степени адекватности отражения этим описанием реальной экономической жизни. Однако уровень соответствия наиболее распространенного математического инструментария (в основном детерминированного концептуального или графо-аналитического) новым требованиям к современным макроэкономическим моделям остается весьма низким. Даже учет "поведенческого аспекта" в теоретической макроэкономике, с помощью которого был достигнут значительный прогресс в описании теории общего равновесия, лишь частично решает проблему адекватности.

Следует отметить, что современная рыночная экономика относится к классу смешанных. В ней производство развивается под воздействием собственных рыночных эффектов, вызывающих, зачастую, не вполне логически обоснованную потребительскую активность домашних хозяйств. При этом государство регулирует этот процесс: устанавливает правовую структуру бизнеса и контролирует ее соблюдение, опираясь на данные статистики производства и потребления, обычно имеющей случайный характер. Макроэкономическая модель такой экономики должна представлять собой сложнейший аппарат, в частности учитывающий и разнообразные описания неопределенности рыночного и государственного, внутреннего и внешнего регулирования. Однако, в отличие от естественных наук (физика, химия и др.), в экономике возможности проведения "натурных" экспериментов весьма ограничены. Поэтому применение традиционного вероятностно-статистического модельного подхода, требующего многократности и повторяемости в одинаковых условиях явлений экономической жизни, часто оказывается малопродуктивным или вовсе невозможным. Совершенствование этого аппарата прежде всего нуждается в тех идеях и тех подходах, с помощью которых можно реализовать математическую методологию, более полно учитывающую "поведенческие" аспекты при описании процессов развития рыночной экономики в кризисных и переходных условиях. Это позволит получить сбалансированные соотношения в макроэкономических моделях, учитывающих не только агрегированные слабо управляемые процессы установления равновесных состояний, но и субъективные факторы, отражающие возможное, полезное или наиболее достоверное и приемлемое при данной информации поведение экономических агентов.

Следует также отметить, что практическая ценность традиционных стохастических и оптимизационных макроэкономических моделей из-за вынужденного упрощения становится сомнительной. В то же самое время имитационные модели выполняют роль инструмента для решения сложных практических (микроэкономических) проблем, но не могут служить основой для решения задач макроэкономического характера. Таким образом, возникает противоречие, разрешение которого может способствовать формированию нового взгляда на основополагающие концепции макроэкономических теоретических исследований с учетом многообразия и скорости изменения экономической действительности и привлечения аппарата как микро, так и макроэкономического моделирования, за счет чего может быть расширена аксиоматика и обеспечена полнота макроэкономических моделей.

Предлагаемый в диссертации подход к усовершенствованию математических макроэкономических моделей основан на использовании молодого и бурно развивающегося направления математики – нечеткой математики. Рамки данного исследования требуют актуализации основных вопросов, связанных с: 1) выявлением и обобщением причин неустойчивости детерминированных результатов базовых моделей классической и кейнсианской школ относительно правдоподобных вариаций исходных предпосылок; 2) корректным применением теории нечеткой меры в задачах обработки рыночной информации, представленной в виде нечеткого множества, отношения, отображения и развитием на этой основе методов нечеткого макроэкономического анализа; 3) разработкой методов прогнозирования и обоснования решений по управлению национальной экономической системой в целях обеспечения долгосрочного поддержания равновесия рыночной экономики в современных геополитических и экономических условиях.

Степень разработанности проблемы. Несмотря на достаточно длительную историю развития самой макроэкономической теории, ее прочные математические основы были заложены только в ХХ веке классическими фундаментальными исследованиями А. Маршалла, Дж. М. Кейнса, В. Леонтьева, М. Самуэльсона и других. Эти исследования привели к обоснованию основных детерминированных макроэкономических моделей: классических моделей круговых потоков, моделей AD-AS и IS-LM, кривых О. Филипса и А. Лаффера, "креста" Дж. Кейнса, моделей экономического роста Р. Солоу, моделей Т. Сарджента, Р. Лукаса, Н. Уоллеса, Дж. фон Неймана, моделей конкурентной экономики К. Эрроу, Ж. Дебре и других. Однако, еще в середине XX века макроэкономические модели формулировались в основном в концептуальной форме, так как постулат эмерджентности функционирования экономики делал бессмысленным формальное описание целей и критериев этого функционирования. Примером могут служить концептуально противоположные модели, известные лишь как закон Сэя и "парадокс сбережений" Кейнса. Выдвинутые в дальнейшем идеи послужили основой для развития двух противоположных концептуальных макроэкономических моделей – классической и кейнсианской.

Базой классического направления явились работы К. Маркса, Л. Вальраса, Ж.-Б. Сэя, В. Парето, А. Маршалла, экономистов "кембриджской школы" и других. Изложенные в этих работах важнейшие концептуальные постулаты позволили экономистам ХХ века получить четко формализованные макроэкономические модели, в определенной степени обобщающие микроэкономический закон спроса и предложения. Учитывая, что классический подход использует в качестве параметров моделей измеримые и наблюдаемые величины, можно говорить о детерминированности и объективности такого подхода.

Основным постулатом "Общей теории…" Кейнса явилось утверждение о большей жесткости заработной платы по сравнению с ценами. Вначале это привело к полному отказу от классической концепции и модели несовершенной конкуренции с полностью жесткими ценами и заработными платами. Наиболее логичным кейнсианская модель IS-LM связи выглядит в известной интерпретации Дж. Хикса. Появление кейнсианства существенно поколебало позиции классической макроэкономики и макроэкономика в данном направлении постоянно развивалась всю вторую половину ХХ века, трансформируясь в неоклассическую концепцию рациональных ожиданий Р. Лукаса. При условии абсолютно гибких цен и ставок процента экономика рациональных ожиданий становится устойчивой при любых возмущениях денежной массы (саморегулируемой при совершенной конкуренции). Это, в свою очередь, привело к модели с полной независимостью реального рынка от рынка денег (классическая дихотомия), либо к модели с аукционером рынка, который ликвидирует неравновесие, возникающее за счет эффекта реальных денежных остатков (неоклассическая неправильная дихотомия).

Идеи и методические приемы классического и неоклассического направлений макроэкономической теории были использованы при построении экономико-математических моделей с использованием аппарата линейного динамического прогнозирования и стационарных случайных процессов. Исследованиям возможностей применения этого аппарата посвящены работы А. Г. Аганбегяна, А. Г. Гранберга, Г. Б. Клейнера, В. Л. Макарова, Н. Н. Моисеева, В. С. Немчинова, В. В. Новожилова, Н. Я. Петракова, В. М. Полтеровича, В. Л. Рубинова, Ю. Н. Черемных и других. Большой вклад в разработку макроэкономических моделей, ориентированных на статистический подход к описанию экономических процессов, был сделан С. А. Айвазяном, Дж. Боксом, С. В. Вишневым, П. А. Ватником, Дж. Джонстоном, Г. Дженкинсом, Н. К. Дружининым, И. И. Елисеевой, М. Дж. Кендаллом, Э. К. Маленво, П. Ньюболдом, С. А. Саркисяном, А. Стюартом, Г. Тейлом, Я. Тинбергеном, Г. Тинтнером, Е. М. Четыркиным и другими.

Особое значение в развитии макроэкономики сыграл переход от концептуальных статических к математическим динамическим моделям с учетом анализа характера поведения экономических субъектов. Большую роль в выявлении таких закономерностей внесло внедрение в макроэкономику методов кибернетики и системного анализа. Развитию этого направления в технической области было посвящено особенно много работ в момент зарождения направления в 50-70х годах ХХ века. Однако в последующем многие системно-кибернетические идеи были применены и в области микро- и макроэкономики. Особую роль в широком внедрении кибернетических методов в экономические исследования сыграли работы И. М. Сыроежина. В дальнейшем прикладные исследования в этом направлении были развиты в работах А. В. Воронцовского, В. М. Гальперина, О. Г. Голиченко, П. И. Гребенникова, А. И. Леусского, А. В. Луссе, И. В. Лысенко, Ю. А. Львова, А. Н. Миронова С. Г. Светунькова, Д. В. Соколова, Б. А. Резникова, Л. С. Тарасевича, В. П. Чернова и других, что свидетельствует об актуальности постоянного поиска новых подходов в математической макроэкономике.

Постоянный интерес вызывают также вопросы применения вероятностных и статистических методов в макроэкономическом моделировании. Теоретической базой этого направления стали результаты фундаментальных исследований Р. Беллмана, Е. С. Вентцель, Л. Заде, А. Н. Колмогорова, М. Миллера, Ф. Модильяни, Дж. Саридиса, У. Шарпа, Я. З. Цыпкина и других. Однако, зачастую, эти результаты либо развивали только математическую теорию, либо предназначались для решения только технических задач. Экономическое направление в большинстве этих работ охватывало лишь частные примеры, отдельные секторы экономики или отдельные рынки, что не позволяло корректно распространить полученные результаты в целом на макроэкономическое моделирование.

В последнее время большое развитие получило направление адаптивного прогнозирования экономических явлений, реализующее подход совместного использования адаптивных принципов и методов имитационного моделирования. В рамках этих моделей впервые была поставлена проблема комбинирования стохастических и субъективных оценок. Новейшие разработки в области адаптивного моделирования опираются не только на априорные зависимости между макропеременными, но и на поведенческие модели агентов и теорию общего равновесия. Исследование экономического прогнозирования на принципах адаптации было начато Р. Брауном, П. Винтерсом, К. Негойцэ, И. И. Перельманом, Ч. Хольтом, Р. Ягером и продолжено В. П. Бородюком, В. Г. Бурловым, В. В. Давнисом, Е. М. Левицким, А. И. Орловым, П. В. Севастьяновым, Д. П. Севастьяновым, Г. Б. Шильманом, Е. Л. Торопцевым, Ю. Н. Эйсснером и другими.

Несмотря на достигнутые значительные успехи, в развитии макроэкономической теории на современном этапе прослеживаются две характерные негативные тенденции, указанные, например, в работах В. М. Полтеровича:

Большинство детерминированных и стохастических результатов неустойчивы относительно правдоподобных вариаций исходных предпосылок.

Обнаруженные эмпирические закономерности не накапливаются, а, напротив, опровергаются последующими исследованиями.

Преодоление первой тенденции, как правило, связано с применением все более и более сложных методов динамического моделирования, в том числе, с использованием принципа Р. Бира включения "черного ящика" того или иного "оттенка" в цепь управления.

Идеи преодоления второй тенденции развиваются на основе учета особого свойства активности экономических систем. В таких системах принятие окончательных решений принадлежит только человеку, а не машине, какой бы совершенный алгоритм в нее не был заложен. Именно в рамках этого направления в последнее время идет бурное развитие методов комплексного адаптивного прогнозирования и построения адаптивно-имитационных моделей. В частности, разработке этого направления посвящены труды В. В. Давниса, Е. М. Левицкого и других.

Однако, применительно к макроэкономическим моделям, идеи создания математического аппарата, обладающего высокой степенью адекватности, не в полной мере учитывали двойственность самого свойства активности макроэкономических систем. Так, с одной стороны, при самой высокой степени адекватности a-posteriori, существенно снижается правдоподобность оценок с использованием аппарата динамического прогнозирования. С другой стороны, использование только субъективных оценок a-priori ограничивает математический аппарат лишь до уровня графо-аналитических малоразмерных и качественных моделей.

К сожалению, идеи комбинирования экстраполяционных и субъективных оценок пока что ограничиваются рамками адаптивно-рациональных моделей микроэкономики (отдельных процессов, в лучшем случае – рынков) и используют лишь один (либо поссибилический, либо аксиологический) аспект двойственности в моделях выбора экономических агентов.

.РВ настоящее время известно достаточно ограниченное количество исследований в данной области. Анализ результатов этих исследований, проведенный, например, в работах Дж. Армстронга, И. Махуда, А. О. Недосекина, В. И. Тиняковой, показал, что в основном они относятся к начальному уровню понимания и разработки проблемы учета двойственности в экономических системах при макроэкономическом моделировании. В них явно преобладает поисковый характер, что и выводит на первый план проблему построения адекватных моделей рыночной экономики с применением нечетко-возможностных математических методов для учета двойственности свойства активности макроэкономических систем.

Объект исследования – рыночный механизм установления общего равновесия в экономической системе на макро- и мезоуровне .

Предмет исследования – современный аппарат моделирования процессов установления и поддержания общего экономического равновесия и возможности его применения.

Цель исследования – развитие аппарата макроэкономического моделирования с использованием нечетко-возможностных математических методов анализа микроэкономических процессов, моделирования мотивации фирм, домашних хозяйств и механизмов уравновешивания спроса и предложения, расширяющих прикладные возможности современной макроэкономики.


загрузка...