Синтез трихлорметиларенов и их реакции с пиридинами и другими нуклеофилами (13.07.2009)

Автор: Поддубный Игорь Сергеевич

СХЕМА 23

При использовании метанола соответствующий метиловый эфир N?-ацетилбенз-гидразоновой кислоты выделить не удалось, что согласуется с литературными данными о существенно большей лёгкости циклизации в 1,3,4-оксадиазолы метиловых эфиров N?-ацилбензгидразоновых кислот по сравнению с этиловыми эфирами типа 56.

Состав смесей и строение синтезированных соединений подтверждается данными элементного анализа, масс-спектрометрии, ИК- и ЯМР-спектроскопии. В ИК-спектрах всех 1,3,4-оксадиазолов имеются полосы поглощения в области 1620-1600 см-1 ((С=N) и 1190-1100 см-1 ((С-О-С), которые характерны для оксадиазольного цикла и согласуются с имеющимися литературными данными.

Таким образом, был разработан простой одностадийный метод синтеза 2,5-дизамещенных 1,3,4-оксадиазолов на основе ТХМА 2 и ацилгидразинов, обозначена область применения этого метода, включая возможность использования гидразидов гетероароматических кислот, изучена зависимость выхода оксадиазолов от строения исходных соединений и получены данные о механизме гетероциклизации. Последний, по всей видимости, включает промежуточное образование и циклизацию гидразоноил-хлоридов 55 и эфиров N’-ацилбензгидразоновых кислот 56.

4.2. Синтез симметрично замещенных 2,5-диарил-1,3,4-оксадиазолов

взаимодействием трихлорметиларенов с гидразингидратом

Как было показано выше, при изучении реакций трихлорметиларенов 2 с ацилгидразинами 48 были выявлены основные факторы, определяющие направление превращений. В частности, в спиртовых растворах в отсутствие пиридина из бензотрихлорида 2а и его метилзамещенных 2ж,з,и в результате алкоголиза получаются, главным образом, эфиры ароматических карбоновых кислот, тогда как 2,5-дизамещенные 1,3,4-оксадиазолы 14, 52 и 54 образуются в качестве минорных продуктов. При взаимодействии этих же реагентов в пиридиновых растворах преимущественно или исключительно получаются продукты восстановительной конденсации – соответствую-щие N–замещенные гидразоны ароматических альдегидов 50. Оптимальным для гетероциклизации, приводящей к замещенным 1,3,4-оксадиазолам 14, 52 и 54, оказалось кипячение реагентов в смеси пиридина с метанолом или этанолом:

2 48 55 14, 52, 54 22-97 %

СХЕМА 24

Вместе с тем, при кипячении ТМХА 2а,ж с гидразингидратом N2H4?H2O (мольное соотношение ТХМА : гидразингидрат равно 2 : 1) в смеси пиридин-метанол симметрично замещенные 2,5-диарил-1,3,4-оксадиазолы 14а,у были получены с довольно низкими выходами - 17 % и 25 %. При этом в случае бензотрихлорида (2а) наряду с 2,5-дифенил-1,3,4-оксадиазолом (14а) были выделены метилбензоат (выход 43 %) и бензгидразид 48в (выход 8 %).

Учитывая эти результаты, с целью более эффективного синтеза симметрично замещенных 1,3,4-оксадиазолов было решено отказаться от использования пиридина в качестве сорастворителя и акцептора хлористого водорода и проводить реакцию в иных условиях – при кипячении в этаноле в присутствии избытка гидразингидрата в качестве акцептора НСl. Было показано, что кипячение реагентов в этаноле в течение 40 минут приводит к 2,5-дифенил-1,3,4-оксадиазолу (14а, Ar = R) с выходом 96 %:

2а,в,н 14а,ф,х 68-96 %

2: Ar = Ph (а); 4-ClC6H4 (в); 3-BrC6H4 (н); 14: Ar = Ph (а); 4-ClC6H4 (ф); 3-BrC6H4 (х)

СХЕМА 25

В указанных условиях аналогично бензотрихлориду 2а с гидразином реагируют галогензамещенные ТХМА 2в,н, проявляющие более низкую реакционную способность, – 4-хлорбензотрихлорид (2в) и 3-бромбензотрихлорид (2н), при этом выходы оксадиазолов 14ф,х составляют соответственно 81 % и 68 %. В случае о-замещенного ТХМА, 2-хлор-бензотрихлорида 2б, был выделен только продукт последовательного гидролиза и алкоголиза – этиловый эфир 2-хлорбензойной кислоты (78 %). Очевидно, в данных условиях вследствие стерических препятствий, обусловленных о-заместителем 2-хлор-бензотрихлорида 2б, конкурирующий алкоголиз трихлорметильной группы протекает намного быстрее, чем взаимодействие ТХМА 2б с гидразингидратом с промежуточным образованием гидразоноилхлорида 55, а возникающий при алкоголизе этиловый эфир 2-хлорбензойной кислоты вследствие тех же стерических препятствий и в условиях кратковременного взаимодействия практически не подвергается гидразинолизу.

В тех же условиях высоко реакционноспособный мезитотрихлорид 2и, который в спиртово-пиридиновых смесях дает лишь продукты восстановительной конденсации и алкоголиза, также не удалось подвергнуть гетероциклизации, так как он полностью превращается в этиловый эфир 2,4,6-триметилбензойной кислоты (выход 95 %). Это свидетельствует о том, что в спиртовой среде для высоко реакционноспособных о,о’-дизамещенных ТХМА 2 доминирующим процессом является алкоголиз.

С учетом полученных нами результатов детальная схема синтеза симметрично замещенных 1,3,4-оксадиазолов для реакций стерически незатрудненных ТХМА 2 с гидразингидратом в спиртовой среде включает в себя следующие стадии (схема 26):

- алкоголиз ТХМА с образованием дихлорацеталя 57, либо неполный гидролиз под действием воды с образованием ароилхлорида 58, либо образование гидразоноилхлорида 33 под действием гидразина (параллельно протекающие реакции);

- превращение дихлорацеталя 57 в ароилхлорид 58 с отщеплением RCl, либо под действием гидразина в эфир гидразинокислоты 59; альтернативный путь образования эфира гидразинокислоты 59 – взаимодействие гидразоноилхлорида 33 со спиртом (алкоголиз);

- взаимодействие эфира гидразинокислоты 59 с ароилхлоридом 58 или с дихлор-ацеталем 57 с образованием эфира N?-ацилбензгидразоновой кислоты 56;

- циклизация эфира N?-ацилбензгидразоновой кислоты 56 с отщеплением спирта в симметрично замещенный 1,3,4-оксадиазол; альтернативный путь – циклизация под действием основания гидразоноилхлорида 55, образующегося при взаимодействии ароилхлорида 58 или дихлорацеталя 57 с гидразоноилхлоридом 33.

СХЕМА 26

Нежелательным, конкурирующим направлением превращений ТХМА 2 является взаимодействие ароилхлоридов 58 со спиртом с образованием эфиров соответствующих бензойных кислот, которые в условиях кратковременного взаимодействия практически не подвергаются гидразинолизу с образованием гидразидов кислот. Это направление взаимодействия преимущественно реализуется для стерически затрудненных ТХМА 2б,и. Так, 2-хлорбензотрихлорид 2б и мезитотрихлорид 2и, по всей видимости, реагируют не с молекулами спирта или гидразина, а с молекулами воды (из гидразингидрата), образуя ароилхлориды 58, которые легко превращаются в сложные эфиры соответствующих ароматических кислот. Последние, как мы показали экспериментально, в данных условиях не образуют в сколько-нибудь заметных количествах гидразиды ароматических кислот.

Таким образом, полученные нами результаты позволяют констатировать, что хорошие препаративные выходы симметричных 2,5-диарил-1,3,4-оксадиазолов 14 при взаимодействии ТХМА с гидразингидратом в этаноле (метаноле) можно достичь лишь для стерически незатрудненных ТХМА 2а,в,н, проявляющих к тому же невысокую реакционную способность. Для других ТХМА 2, в том числе для всех метилзамещенных гомологов бензотрихлорида 2ж-м, в этих условиях доминирующим процессом является алкоголиз с образованием сложных эфиров бензойных кислот.

4.3. Синтезы 1,4-бис-(5-R-1,3,4-оксадиазолил-2)бензолов

С целью получения полиядерных гетероциклических соединений, обладающих люминесцентными свойствами, мы распространили разработанный нами метод получения 2,5-диарилзамещенных 1,3,4-оксадиазолов 14 и 54 (см. раздел 4.1) на бифункциональный, выпускаемый в промышленном масштабе ТХМА - 1,4-бис(трихлорметил)бензол 2д, технология получения которого была нами разработана и запатентована.

Взаимодействие ТХМА 2д с некоторыми ацилгидразинами (48в,г,ж,м,н) в этанольно-пиридиновой смеси позволило нам получить ряд ранее описанных 1,4-бис-(5-R-1,3,4-оксадиазолил-2)бензолов 60в,г,ж,м,н с умеренными выходами в пределах 35-47 %. Обсуждаемые превращения представлены ниже на схеме 27:

2д 48 60 35-47 %

48, 60: R = Ph (в); 2-OHC6H4 (г); 4-NO2C6H4 (ж), 4-C5H4N (м); H (н);

СХЕМА 27

Синтез 1,4-фениленбис-1,3,4-оксадиазолов типа 60 на основе бис(трихлорметил)-аренов и гидразидов кислот 48 до настоящей работы не был описан, хотя многие подобные гетероциклические системы, особенно с заместителем R = Ar, обладающие люминесцентной способностью, хорошо известны. Описанные ранее методы получения этих полиядерных гетероциклов характеризуются многостадийностью и основаны на относительно сложном препаративном синтезе исходных соединений, что весьма существенно ограничивает препаративную ценность и область применения таких методов синтеза, а также обусловливает высокую производственную себестоимость целевых продуктов.

Несмотря на то, что выходы 1,4-фениленбис-1,3,4-оксадиазолов 60в,г,ж,м,н по разработанному нами методу относительно невысоки (как и в случае диарилоксадиазолов 14, 52 и 54, это обусловлено параллельно протекающим алкоголизом), его несомненными преимуществами являются: доступность исходных соединений и растворителей; универсальность и простота синтеза (в одну стадию); возможность его реализации в промышленном масштабе с использованием обычного технологического оборудования.

Фениленбис-1,3,4-оксадиазолы 60 обладают весьма низкой растворимостью в большинстве обычных растворителей, что ограничивает возможность использования для их анализа и идентификации ЯМР-спектроскопии. Поэтому для доказательства строения синтезированных соединений нами получены и детально рассмотрены их масс-спектры электронного удара. При этом были впервые выявлены специфические направления фрагментации 1,4-фениленбис-1,3,4-оксадиазолов, пригодные для чёткой идентификации и подтверждения строения этих гетероциклических систем.

4.4. Особенности взаимодействия о,о’-дизамещенных трихлорметиларенов с ацилгидразидами при гетероциклизации

Как уже отмечалось, в реакциях трихлорметиларенов с гидразином и его производ-ными в пиридине или в смеси пиридина с метанолом (этанолом) соотношение двух конкурирующих процессов – восстановления ТХМА и гетероциклизации – зависит, в первую очередь, от строения исходного ТХМА 2 и определяется относительной легкостью восстановления последнего. Причем в присутствии спирта протекает и третий конкуриру-ющий процесс – алкоголиз трихлорметильной группы. Дальнейшее изучение взаимодей-ствия ТХМА 2 с гидразином или ацилгидразинами показало, что проведение реакции в смесях пиридина с этанолом или метанолом позволяет существенно увеличить (до 97 %) выходы продуктов гетероциклизации – 2,5-дизамещенных 1,3,4-оксадиазолов 14, 52 и 54. Однако, даже в этих, оптимальных для гетероциклизации условиях при взаимодействии мезитотрихлорида (2и) с гидразином и гидразидами карбоновых кислот (48) получить целевые мезитилзамещенные 1,3,4-оксадиазолы не удалось. В этом случае получались лишь продукты восстановительной конденсации – арилгидразоны 2,4,6-триметил-бензальдегида 19 и/или продукты алкоголиза - эфиры 2,4,6-триметилбензойной кислоты, причем выход последних в отсутствие пиридина достигал 88-95 %.

Такое специфическое поведение мезитотрихлорида, несомненно, обусловлено его строением и связанной с ним высокой реакционной способностью. Согласованный эффект трех метильных групп резко облегчает любое нуклеофильное замещение атомов хлора группы ССl3. В итоге направление реакции определятся конкуренцией присутствующих в реакционной смеси трёх нуклеофилов: гидразида, пиридинового основания и спирта. Последние два, как показали полученные нами результаты, оказываются наиболее сильными. В связи с этим представлялось весьма актуальным, как с теоретической, так и с практической точки зрения, найти такие условия реакции, которые позволили бы селективно получить 2,5-диарил-1,3,4-оксадиазолы из стерически затрудненных о,о’-дизамещенных трихлорметиларенов 2и-л. Основная задача при этом состояла в необходимости заблокировать нежелательные процессы алкоголиза и восстановительной конденсации путем использования других, более инертных растворителей и оснований. Так, восстановительную конденсацию можно предотвратить, если использовать в качестве основания и сорастворителя ?- или ?-метилпиридин, неспособный участвовать в акте восстановления.

Эта идея была успешно реализована в работе (Беленький Л.И., Луйксаар С.И., Краюшкин М.М., Химия гетероцикл. соедин., 1999, № 4, С.557-563) при использовании трет-бутанола вместо первичных спиртов (этанола, метанола), что позволило подавить нежелательный алкоголиз. При этом в качестве основания вместо пиридина был использован 2,6-диметилпиридин, который, как было показано нами ранее, неспособен из-за стерических препятствий образовывать с мезитотрихлоридом 2и пиридиниевые соли 23 и восстанавливать трихлорметильную группу. В итоге из высоко реакционноспособного мезитотрихлорида 2и и гидразидов 48в,г,е,о были получены 5-арил(гетарил)-2-(2,4,6-триметилфенил)-1,3,4-оксадиазолы 14ц-ш и 54п с выходами 50-80 %:

2и 48 14, 54 50-80 %

48: в R = Ph; г R = 2-НOC6H4; е R = 3-O2NC6H4; о R = 2-C4H3O (фурил).

14: ц R = Ph; ч R = 2-НOC6H4; ш R = 3-O2NC6H4; 54п R = 2-C4H3O (фурил).


загрузка...