Регионарная и системная гемодинамика при модуляции волновых характеристик кровотока и внешнего дыхания (12.07.2010)

Автор: Поясов Илья Залманович

Измеряемые параметры (артериальное давление, перфузионное давление и давление венозного оттока в экстракорпоральном резервуаре) регистрировали с помощью механотронных датчиков электроманометров производства ЭПМ НИИЭМ СЗО РАМН. Кровоток измерялся проточным датчиком ультразвукового расходомера «Dyna» (тип DUD-400, Франция). Для стандартизации динамической составляющей венозной нагрузки в экспериментальную установку было введено специально разработанное автоматическое подъёмное устройство. Температура поступающей в орган крови поддерживалась на уровне 37оС с помощью ультратермостата UTU-4 (Германия).

Полученные экспериментальные данные после подсчёта средних и их ошибок сводились в двумерные таблицы (в координатах амплитуда – частота); при статистической обработке проверялась гипотеза о достоверности различий (сдвигов) средних от нуля.

Опыты по изучению влияния параметров дыхания на гемодинамику лёгочных сосудов проведены на 11 кошках, наркотизированных уретаном в условиях искусственной вентиляции лёгких аппаратом «Вита-1». Начальные параметры вентиляции лёгких животного выбирали по рекомендуемым (Дворецкий Д.П., Ткаченко Б.И., 1987; Гриппи М., 1997) значениям составляющих газового состава артериальной крови (рН – 7.294 ± 0.018; рСО2 – 36.4 ± 2.3 мм рт. ст.; рО2- 102.2 ± 3.4 мм рт.ст.), измеряемым с помощью газоанализатора крови BMS 3 Мк2 («Radiometer», Дания). В указанных условиях напряжение газов в конечных порциях выдыхаемого воздуха составили: рО2 – 17.8 ± 0.2 об%: рСО2 – 3.2 ± 0.17 об%, при интратрахеальном давлении 4.1 ± 0.5 см. вод. ст. Газовый состав выдыхаемого воздуха оценивали с помощью масс-спектрографа МХ6202 (Россия).

Заднюю долю правого лёгкого изолировали в гемодинамическом отношении и перфузировали аутокровью с помощью насоса постоянной производительности. Перфузионное давление в артериальном сосудистом русле в доли лёгкого устанавливали на уровне 21.0 ± 1.5 мм рт.ст., а венозное давление, при котором кровь оттекала в экстракорпоральный резервуар, поддерживалось равным 5 мм рт.ст., что соответствует данным литературы (Дворецкий Д.П., Ткаченко Б.И., 1987). Измерение коэффициента капиллярной фильтрации, капиллярного гидростатического давления, а также расчёт пре- и посткапиллярного сопротивлений (Ра и Рv) осуществляли по методикам, описанным ранее (Интеграция…, 1984).

Модуляцию параметров дыхания создавали посредством изменения дыхательного объёма за цикл (V) или частоты (f) искусственной вентиляции лёгкого в 1.5; 2 и 3 раза (исходный уровень искусственной вентиляции лёгкого (V) составлял 1910 ± 23 мл ? мин -1). Показатели обменной (CFC, Pс), резистивной (R, Rа, Rv) функций лёгкого, газового состава выдыхаемого воздуха (рО2, рСО2), напряжение газов и кислотно-щелочного состояния артериальной и венозной крови (рН, рСО2, рО2), интратрахеальное давление измеряли до воздействия и на 5 - 10 минутах после изменения режима искусственной вентиляции лёгких.

Исследование влияния амплитуды дыхательного цикла на волновые характеристики артериального и венозного кровотоков, а так же влияния прессорных стимулов на амплитудно-частотные характеристики гемодинамических параметров большого и малого кругов кровообращения проводили на специально разработанной многоцелевой универсальной экспериментальной установке. Созданная установка позволяла проводить многофакторный анализ характера взаимосвязи исследуемых показателей и осуществлять гибкую адаптацию своей структуры под конкретную задачу эксперимента. Исследования этой части работы выполнены на 80 кошках массой 4.0-5.0 кг под нембуталовым наркозом в условиях острых опытов при искусственной вентиляции лёгких и вскрытой грудной клетке, а в ряде опытов – при естественном дыхании животных. Искусственная вентиляция лёгких осуществлялась аппаратом «Фаза-9» при этом частота дыхания составляла 12 циклов/мин, а дыхательный объём – 70 см3. Отсутствие сдвигов газового состава крови контролировали при помощи газоанализатора ABL-50, «Radiometer», Дания. Температуру тела животного поддерживали на уровне 37.8-38.4 ?С путём подогрева операционного столика. Для предотвращения тромбообразования в сердечно-сосудистой системе животным в левую бедренную вену вводили гепарин в (1000 ЕД/кг).

0.5 мм рт. ст. Выдох происходил через клапан в атмосферу без увеличения сопротивления. Создаваемое у животных в результате такого дыхания отрицательное внутригрудное давление оценивали по величине давления в грудной части пищевода с помощью силиконового зонда диаметром 5 мм и длиной 15 см, соединённого с датчиком Statham P23XL, США. Оно возрастало только в течение вдоха и возвращалось к исходному значению во время выдоха. Кровоток в сонной артерии регистрировали манжеточным датчиком ультразвукового расходомера Т-106 «Transonic» (США), а кровоток в брюшной или восходящей аорте (сердечный выброс) регистрировали манжеточным датчиком электромагнитного расходомера MVF-2100 «Nihоn Kohdеn» (Япония). В этих опытах грудная клетка у животных не вскрывалась, а измерение венозного кровотока осуществляли в брюшной части каудальной полой вены с помощью манжеточного датчика ультразвукового расходомера T-106 «Transonic», США. После расположения датчика на вене брюшную полость герметически зашивали послойно.

Для выяснения степени влияния амплитуды дыхательного цикла (глубины дыхания) на артериальный и венозный кровоток у человека в специальной серии опытов были проведены наблюдения на 6 молодых людях-добровольцах, у которых в вертикальном положении измеряли кровоток в левой сонной артерии и в левой бедренной вене с помощью линейного датчика (5 МГц) ультразвукового датчика сонографа «Philips» (Голландия). Испытуемым предлагали произвести 9 глубоких медленных вдохов и выдохов в течение 40 с. Сдвиги артериального и венозного кровотоков записывали на видеокассету с последующей визуализацией на эхокардиографе, компьютерным анализом и статистической обработкой измеряемых величин.

Изучение характера влияния прессорных стимулов на волновые характеристики гемодинамических параметров большого и малого кругов кровообращения проводили у животных при вскрытой грудной клетке (путём удаления грудины) и в условиях искусственной вентиляции лёгких. Одновременно осуществляли многопараметрическую регистрацию показателей системы низкого и высокого давлений, а так же ряда параметров кардиогемодинамики.

Сердечный выброс у кошек определяли в восходящей аорте манжеточным датчиком ультразвукового расходомера Т-106, «Transonic», США. Артериальное давление измеряли в левой бедренной артерии датчиком ПДП-400. Частоту сердечных сокращений измеряли специально сконструированным тахометром по интервалу между зубцами R-R электрокардиограммы, регистрируемой во втором стандартном отведении.

Суммарный венозный возврат крови к сердцу рассчитывали на компьютере по сумме величин кровотоков в передней и задней полых венах, измеряемым манжеточными датчиками двухканального ультразвукового расходомера T-206, «Transonic», США. Давление в предсердиях измеряли датчиками давления Baxter, США с помощью гибких катетеров, проведённых в полости предсердий через их ушки. Давление в лёгочной артерии определяли датчиком ПДП-400 с помощью мягко-эластичного катетера диаметром 2 мм и длиной 20 см, который проводили в лёгочную артерию через ушко правого предсердия, минуя последовательно трикуспидальный и полулунный клапаны сердца. У животных регистрировали систолическое и диастолическое артериальное давление и давление в лёгочной артерии, а так же в предсердиях. Кровоток в лёгочной артерии измеряли манжеточным датчиком электромагнитного расходомера MFV-2100, «Nihon Kohden», Япония. Лёгочное сосудистое сопротивление рассчитывали по формуле Пуазейля, используются величины среднего давления в лёгочной артерии и левом предсердии, которые рассчитывали с помощью компьютера как среднее арифметическое систолического и диастолического давлений.

В соответствии с поставленными задачами у животных внутривенно применяли ряд прессорных - адреналин (2.5 - 5.0 мкг/кг), норадреналин (2.5 -5.0 мкг/кг) вазоактивных веществ, которые вызывали примерно одинаковые по величине (на 50-60%) сдвиги артериального давления.

Исследуемые показатели артериального давления, кровотоков в полых венах, давления и кровотока в лёгочной артерии, сердечного выброса, давления в предсердиях регистрировали на быстродействующем чернилопишущем приборе Н-338-8П (или Н-327/5). При помощи платы аналого-цифрового преобразования L-Сard L-783 (Россия) осуществлялась также запись этих сигналов на жёсткий диск компьютера с последующим анализом программой АСТ (Россия). Статистическую обработку экспериментальных данных проводили на IBM PC Pentium с использованием пакета оригинальных и стандартных (Axum 5.0, Math Soft Inc.) программ, t-критерия Стьюдента.

результаты работы и их обсуждение

Функции сосудов скелетных мышц задней конечности при амплитудно-частотной модуляции волновых характеристик перфузионного кровотока в режиме стабилизации его средней величины.

В физиологической литературе отсутствуют данные, рассматривающие совместное влияние двух волновых характеристик пульсирующего кровотока на функции органных сосудов, тем более одновременно, в единых методических условиях, на их резистивную, ёмкостную и обменную функции. Изучение влияния амплитуды и частоты пульсаций на сопряжённые функции сосудов являлось одной из задач проводимого исследования.

При переходе от непульсирующей к пульсирующей перфузии в проведённых экспериментах при вариациях амплитуды (А) и частоты (f) перфузионного кровотока отмечали, три типа изменений суммарного сосудистого сопротивления (R): увеличение (в большинстве случаев – 44%), уменьшение, либо отсутствие изменений, причём при определённых сочетаниях амплитуды и частоты пульсаций сдвиги этого показателя были достоверными. Результаты статистической обработки изменений суммарного сопротивления показали, что величина и направленность его сдвигов зависят от значений волновых характеристик кровотока: амплитуды и частоты, причём максимум зарегистрированных изменений, равный 4.3 ( 1.9% (p<0.05), наблюдали при f=90, A=0.5; минимум, равный -5.5 ( 2.3 (p<0.05) – при f=90, A=1.5 (табл. 1). Зарегистрированное увеличение суммарного сопротивления согласуется с данными литературы (Mellander S., Arvidsson S., 1974), где увеличение суммарного сопротивления скелетной мускулатуры составило 6.0 ( 0.5%. Достоверного уменьшения суммарного сопротивления в цитированной работе не наблюдали, что объясняется, по-видимому, тем, что работа Мелландера и Арвидсона была проведена без учета влияния вариаций амплитуды и частоты пульсаций на исследуемое сосудистое русло.

Таблица 1. Сдвиги суммарного сопротивления сосудов скелетной мышцы

при изменении амплитуды и частоты пульсирующего крово-

1.4 ( 0.7

2.1 ( 1.1

0.8 ( 0.4

3.0 ( 2.0

1.6 ( 1.1

4.3 ( 1.9 *

2.8 ( 1.1 *

1.9 ( 2.1

0.6 ( 1.0

-0.7 ( 1.0

2.4 ( 2.0

2.3 ( 1.0 *

-4.5 ( 3.5

-5.5 ( 2.3 *

-1.0 ( 1.1

3.4 ( 4.4

Обозначения: A - амплитуда пульсаций (в частях по отношению к исходной величине, измеренной в бедренной артерии до начала эксперимента); f –частота пульсаций (ударов/мин); * - p < 0.05; величины сдвигов даны в про- центах по отношению к значениям, полученным при непульсирующем кро-

вотоке.

При изменении амплитуды и частоты пульсаций увеличение пре-капиллярного сопротивления (Ra) отмечено в 44.5% случаев, уменьшение - в 53.8%. Результаты статистической обработки показали, что достоверные сдвиги Ra были направлены только в сторону уменьшения (-6.4 ( 2.3% (p<0.05) при f=90, A=1.5). При увеличении амплитуды пульсаций и уменьшении частоты наблюдалась тенденция к увеличению отрицательных сдвигов прекапиллярного сопротивления.

Изменения посткапиллярного сопротивления (Rv) при амплитудно-частотной модуляции перфузионного кровотока были направлены, в основном, в сторону увеличения (71.8% случаев). Максимум сдвигов, равный 19.1 ( 5.7% (p<0.02) наблюдали при f=90, A=1. Достоверных сдвигов в сторону уменьшения посткапиллярного сопротивления, в отличие от изменений суммарного и прекапиллярного, зарегистрировано не было.

Сравнительная характеристика исследуемых сопротивлений R, Ra, Rv в диапазоне своих максимальных изменений в ответ на появление пульсаций представлена на рис. 1 (зависимость от f при A=0.5). Поскольку изменения Rv наиболее выражены (по сравнению с R и Ra) и, учитывая, что его изменения практически напрямую передаются на капиллярное гидростатическое давление (Интеграция…, 1984), можно полагать высокую степень влияния пульсаций на обменную функцию сосудов.


загрузка...