Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена (12.04.2010)

Автор: Гильманов Хамит Хамисович

В первой главе сформулированы требования к катализаторам из условий их эксплуатации, рассмотрены существующие технологии их производства, их достоинства и недостатки, сделаны выводы и постановка задачи исследования.

Изопрен является крупнотоннажным мономером для получения синтетических каучуков, термоэластопластов и резинотехнических изделий. Почти все технологии синтеза изопрена являются каталитическими и экономическая эффективность его производства определяется качеством используемых катализаторов, поэтому повышение конкурентоспособности отечественных изопреновых каучуков на мировом рынке является актуальной задачей.

Промышленный изопрен в РФ получают из изопарафинов С4-С5 по двум базовым технологиям:

- последовательным дегидрированием изопентана до изоамиленов на микросферических алюмохромовых катализаторах с дегидрированием последних в изопрен на железокалиевых катализаторах;

- дегидрированием изобутана на микросферических алюмохромовых катализаторах до изобутилена и последующей его конденсацией с формальдегидом до изопрена.

В обзоре рассмотрены существующие технологии получения катализаторов дегидрирования. Выявлены основные технологические операции, определяющие базовые эксплуатационные свойства получаемых катализаторов, достоинства и недостатки технологий. Описаны условия эксплуатации каталитических систем и сформулированы требования к разрабатываемым катализаторам. Так, для микросферических катализаторов дегидрирования важно не только обеспечить прочность частиц катализатора (определяющую его расходную норму на тонну продукции), но и минимальный абразивный эффект, оказывающий катализатором на транспортные линии и внутренние устройства реактора.

Для железокалиевых систем, учитывая большие единичные мощности реакторов, необходимо создавать особо прочные гранулы катализатора с высокой каталитической активностью и селективностью.

Как наиболее современным и перспективным для ОАО «Нижнекамскнефтехим» способом получения изопрена предложена технология одностадийного синтеза из изопентана на платинооловянном катализаторе. На основании обобщения и анализа опубликованных материалов сделаны выводы и постановка задачи исследования.

Во второй главе описана экспериментальная методическая часть работы: синтезы катализаторов, лабораторные установки испытания каталитической активности, условия проведения опытно-промышленных испытаний, используемые реагенты и состав сырьевых потоков, методы аналитического контроля и применяемые физико-химические методы исследования катализаторов.

Третья глава посвящена разработке промышленной технологии получения микросферического алюмохромового катализатора дегидрирования изопарафинов С4-С5 и результатам их промышленной эксплуатации на ОАО «Нижнекамскнефтехим».

Выбор продукта ТХА-ТГА

Эксплуатационные характеристики микросферических катализаторов дегидрирования, такие как стойкость к истиранию, абразивная активность, стабильность каталитических показателей и фракционного состава в значительной степени определяются свойствами алюмооксидных носителей. На первом этапе проведен анализ импортного (SA-1001) и шести отечественных образцов носителей на основе продуктов термохимической активации тригидрата алюминия (ТХА-ТГА) и выбор наиболее оптимальных для производства катализаторов дегидрирования (табл. 1).

По данным рентгенофазового и термического анализов носители представляют собой смесь фаз бемита, гиббсита и рентгеноаморфного гидроксида алюминия, содержание которого составляет от ( 46 до 60 масс. %, что отличает промышленные носители от классического продукта ТХА-ТГА с высокой степенью аморфизации. Наличие гиббсита обусловлено неполным терморазложением ТГА, а присутствие бемита свидетельствует о неоптимальном режиме ТХА.

Таблица 1 – Текстурные характеристики промышленных носителей на основе продукта ТХА-ТГА

Носитель марки* Удельная

поверхность, м2/г Объем пор, см3/г Dmax, A P** Содержание примесей, масс. %

SБЭТ, Smicro, VБЭТ, Vmicro,

Na2O SiO2 Fe2O3

SА-1001 329 229 0,23 0,128 39 97 0,15 0,26 0,12

КАТ-01-МС 134 34 0,11 0,017 37 81 0,30 0,03 0,05

АОК 63-94 126 19 0,11 0,009 39 90 0,30 0,03 0,06

Н-1 101 16 0,09 0,008 39 89 0,30 0,05 0,06

ННХК-12МА 95 16 0,09 0,008 39 90 0,25 0,03 0,05

А-3 90 26 0,08 0,012 39 90 0,30 0,02 0,10

А-4 122 82 0,10 0,040 39 88 0,30 0,01 0,02

Примечание: * фракционный состав микрогранул: 71-160 мкм – 90 масс. %, ** Р- стойкость к истиранию

Прочностные характеристики микросферических гранул определяются типом (кристаллические или коагуляционные) и прочностью контактов между образующими их частицами. В ряду рассмотренных образцов наибольшей (97 масс. %) стойкостью к истиранию обладает носитель марки SA-1001, что также подтверждается дополнительным тестом, проведенным по методике ASTM D031A-930-40-P, результаты которого представлены на рисунке 1. Показатели стойкости к истиранию микрогранул отечественных носителей находятся преимущественно на уровне 88-90 масс. %, что также подтверждается тестом ASTM. По данным азотной порометрии для всех образцов характерно мономодальное распределение объема пор с максимумом на дифференциальной кривой в области диаметров 37-39 A (рис. 2, а).

SA 1001 А-3

Рис. 1 – Распределение частиц по размерам в носителях на основе продуктов ТХА-ТГА до и после теста на истирание по методике ASTM D031A-930-40-P:

Пористая структура импортного носителя SA-1001 отличается большей микропористой составляющей, которая определяет до 70 % величины удельной поверхности (Smicro=229 м2/г) и до 56 % объема пор (Vmicro=0,128 см3/г). Поэтому удельная поверхность и порометрический объем отечественных носителей значительно ниже.

Рис. 2 – Распределение объема пор по размерам в исходных алюмооксидных

носителях (а) и полученных прокаливанием при 550 (С в течение 2 ч (б):

1 – SA 1001, 2 – А-3, 3 – А-4

По данным СЭМ микрогранулы образца А-3 представляют собой агрегаты округлой формы, состоящие из игольчатых кристаллов диаметром от 1 до 10 мкм, расположенных радиально вокруг общего центра. Микрогранулы А-4 и SA-1001 являются сферическими агрегатами табулярных кристаллов размером более 20 мкм (рис. 3, б и в).

Рис. 3 – Электронно-микроскопические снимки промышленных микросферических алюмооксидных носителей А-3 (а), А-4 (б), SA-1001 (в)

Из совокупности полученных данных для дальнейшей работы по разработке катализатора, нами были отобраны наиболее устойчивые к истиранию и содержащие минимальное количество примесей, но существенно отличающиеся величинами удельной поверхности и общего объема пор, образцы носителей SA-1001, А-3 и А-4.

Оптимизация стадии подготовки алюмооксидного носителя

для нанесения активного компонента

Как было показано выше, образцы промышленных носителей содержат значительное (22-43 масс. %) количество гиббсита, который может при растворении в кислых водных растворах и последующем гидролизе образовать гель гидроксида алюминия, который способствует агрегации микрогранул носителя (табл. 2, обр. 1 и 2), вызывать изменения его фракционного состава, что недопустимо для технологии производства микросферических катализаторов.

Для предотвращения образования геля гидроксида алюминия количество гиббсита в промышленных носителях должно быть минимально.


загрузка...