Техногенная трансформация геологической среды Верхнекамского соленосного бассейна (11.01.2010)

Автор: Белкин Владимир Викторович

- впервые обоснован и внедрен способ получения смеси природных минералов галита и карналлита, перемешанных в соотношении 1: 2,5–5,0 для получения искусственной морской воды в бассейнах;

- на отдельных участках ВКСБ выявлены зоны с аномальным строением водозащитной толщи (ВЗТ).

Практическая значимость:

- в «Инструкцию по геологическому обслуживанию калийных рудников» (СПб,2002) включен написанный автором раздел «Мониторинг геологической среды» и на его основе внедрены в практику мониторинговые исследования;

- открыто в пределах ВКСБ месторождение экологически чистой пищевой поваренной соли, разработан способ отработки месторождения, что позволило получить миллионы тонн экологически чистой пищевой соли;

- ООО «СВ» (г. Москва) реализуют смесь природных минералов галита и карналлита в соотношении 1:2,5–5,0 для получения искусственной морской воды в бассейнах в расфасовке по 1 и 50 кг;

- в прослоях глины в пределах соляной толщи ВКСБ выявлено новое полезное ископаемое – золото. Горным институтом УрО РАН ( г. Пермь) проводятся опытные испытания по его извлечению.

Защищаемые положения.

1. Длительное техногенное воздействие на геологическую среду соленосных бассейнов, оказываемое в процессе добычи и переработки калийных руд, приводит к нарушению ее устойчивости, сопровождаемому возрастающей сейсмичностью калийдобывающих регионов, проявлением оседаний земной поверхности, прорывами подземных вод в горные выработки и затоплением калийных рудников, образованием провалов на месте их затопления. При этом добыча нефти из подсолевых отложений усиливает проявление негативных процессов. Зоны аномального строения и состояния массивов горных пород регистрируются в процессе доизучения геологической среды (главы 1,2).

2. Фоновые характеристики состояния геологической и сопредельных сред изучаются до начала эксплуатации соляных месторождений. Исследования включают: уточнение строения калийных пластов, оценку гидрогеологических условий их разработки, выявление природы геофизических аномалий, оценку состояния атмосферного воздуха, качество поверхностных и подземных вод, загрязнения снежного и почвенного покровов, величины радиационного фона, состояния флоры и фауны (глава 3).

3. Мониторинг геологической среды эксплуатируемых соляных месторождений осуществляется комплексом исследований, включающим дистанционное зондирование, инструментальные наблюдения за сдвижением земной поверхности, выявление связи ее деформаций с объемами добытой руды, ведение сейсмологического контроля, проведение сейсмо-, электро-, гравиразведки на участках с аномальным строением водозащитной толщи, регистрацию гидродинамического, гидрогеохимического и газового режима подземных вод (глава 4).

4. Рациональное использование георесурсов соленосных бассейнов обеспечивается соблюдением мер охраны подрабатываемых объектов и защиты калийных рудников от затопления, комплексным использованием добываемого сырья с получением, кроме удобрений экологически чистой пищевой соли, смеси компонентов искусственной морской воды, приближенной по составу к воде Мертвого моря, золота, извлеченного из глинистых отходов калийного производства (глава 5).

Апробация работы. Основные положения работы доложены и обсуждены на ряде всероссийских и международных научных конференций и совещаний, в том числе: на Международной конференции «Проблемы безопасности и совершенствования горных работ («Мельниковские чтения»)» (Москва-Санкт-Петербург, 1999), Международной конференции « Геодинамика и напряженное состояние земных недр» (Новосибирск, 1999), Первом Всероссийском совещании по мониторингу геологической среды на объектах горнодобывающей промышленности (Березники, 1999), Региональной конференции «Геология и минерально-сырьевые ресурсы Европейской территории России и Урала» (Екатеринбург, 2000), Всероссийском съезде геологов и научно-практической геологической конференции (Санкт-Петербург, 2000), Координационном совете по защите калийных рудников от затопления (г. Березники, 22. 10. 2001 г.), Международном научном совещании «Техногенная сейсмичность при горных работах: модели очагов, прогноз, профилактика» (Апатиты, 2004), Международной научной конференции «Эколого-экономические проблемы освоения минерально-сырьевых ресурсов» (Пермь, 2005), Региональной научно-практической конференции «Геология и полезные ископаемые Западного Урала» (Пермь, 2008), Международной конференции «Комбинированная геотехнология: комплексное освоение и сохранение недр Земли» (Екатеринбург, 2009).

Публикации. Содержание работы и результаты исследований отражены в 82 работах, в том числе двух монографиях, 67 публикациях в ведущих рецензируемых научных журналах и изданиях, входящих в Перечень ВАК, в двух учебных пособиях для вузов, в десяти материалах конференций, изобретение «Способ отработки калийного месторождения под склонами речных долин» (патент РФ № 2186978) вошло в «Список 100 лучших изобретений России» за 2008 г., заняв второе место в номинации «Технологии экологически безопасной разработки месторождений и добычи полезных ископаемых».

Благодарности. Автор выражает благодарность научному консультанту, доктору геолого-минералогических наук, профессору, заслуженному деятелю науки РФ О.Н. Грязнову, а также докторам геолого-минералогических наук А.И. Кудряшову, Б.М. Осовецкому, А.П. Красавину, В.Н. Дублянскому, К.С. Иванову, докторам технических наук А.А. Баряху, В.И. Костицыну, Ю.П. Кудрявскому, заслуженному геологу РФ Н.В.Кузнецову за ценные консультации в процессе выполнения работы.

Структура и объем работы. Диссертация состоит из введения, пяти глав и заключения. Общий объем работы – 280 страниц, иллюстраций - 38, таблиц - 25. Список использованных источников включает 187 наименований.

Во введении показаны актуальность исследований, цели и задачи работы, научная новизна и практическая значимость. В первой главе «Крупнейшие соленосные бассейны зарубежных стран» рассмотрено геологическое строение Саскачеванского месторождения калийных солей (Канада), месторождений калийных солей Германии и Старобинского месторождения калийных солей (Белоруссия). Показаны последствия техногенного воздействия на их геологическую среду и методы ее мониторинга. Во второй главе «Техногенез геологической среды при разработке калийных руд Верхнекамского соленосного бассейна» приводится описание геологического строения ВКСБ, раскрываются последствия многолетней добычи калийных руд подземным способом, такие как повышенная сейсмичность, оседания и провалы земной поверхности, описывается влияние добычи нефти на геологическую среду и даны результаты ее геологического доизучения и мониторинга. В третьей главе «Определение фоновых характеристик геологической и сопредельных сред» приводятся результаты изучения характеристик на одном из намечаемых к отработке участков ВКСБ: строение калийных пластов, гидрогеологические условия, природа геофизических аномалий, состояние атмосферного воздуха, качество поверхностных и подземных вод, загрязнение снежного и почвенного покровов, величина радиационного фона, состояние флоры и фауны. В четвертой главе «Мониторинг геологической среды Верхнекамского соленосного бассейна» рассмотрен оптимальный комплекс исследований, входящий в систему мониторинга. В пятой главе «Охрана недр и рациональное использование георесурсов Верхнекамского соленосного бассейна» предложены методы и способы комплексного использования добываемого сырья при обеспечении соблюдения мер охраны подрабатываемых объектов и защиты калийных рудников от затопления.

ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ

1. Длительное техногенное воздействие на геологическую среду соленосных бассейнов, оказываемое в процессе добычи и переработки калийных руд, приводит к нарушению ее устойчивости, сопровождаемому возрастающей сейсмичностью калийдобывающих регионов, проявлением оседаний земной поверхности, прорывами подземных вод в горные выработки и затоплением калийных рудников, образованием провалов на месте их затопления. При этом добыча нефти из подсолевых отложений усиливает проявление негативных процессов. Зоны аномального строения и состояния массивов горных пород регистрируются в процессе доизучения геологической среды (главы 1,2).

Природная среда является важнейшей составной частью окружающей среды, включающей в себя четыре главных компонента (Ферсман,1953) – стратосферу, тропосферу, гидросферу и литосферу. Три последние в этом ряду геосферы образуют (Вернадский, 1954) биосферу – сложную наружную оболочку Земли, среду обитания биоты – живого «вещества» планеты. Часть литосферы, а точнее земной коры, которая непосредственно выступает как минеральная основа биосферы, как один из важнейших компонентов окружающей среды, с конца 70-х гг. прошлого века выделяется под названием «геологическая среда». Согласно Е.М. Сергееву (1979), под геологической средой понимается верхняя часть литосферы, которая рассматривается как многокомпонентная динамическая система, находящаяся под воздействием инженерно-хозяйственной деятельности человека и, в свою очередь, в известной степени определяющая эту деятельность. Верхней границей геологической среды является поверхность рельефа (дневная поверхность); нижняя граница – плавающая, неоднородная и неодинаковая по глубине в разных областях Земли. Она определяется глубиной проникновения человека в земную кору (Королев, 1995).

В результате открытия в конце 50-х гг. минувшего столетия крупнейших месторождений калийных солей в провинциях Саскачеван и Нью-Брансуик Канада заняла лидирующее положение в мире по запасам, добыче и экспорту этого вида сырья. Месторождение Саскачеван входит в состав обширного среднедевонского бассейна эвапоритовой седиментации, так называемой синклинали Элк Пойнт Бродфью, вытянутого в северо-западном направлении субпараллельно юго-западной границе докембрийского Канадского кристаллического щита на расстояние более 1500 км при ширине, местами достигающей 400 км. В течение времени с силура до среднего девона этот бассейн был местом максимального погружения в Западной Канаде. Среднедевонское море, наступавшее сюда с юго-востока, распалось на несколько локальных бассейнов с ограниченной циркуляцией воды и эвапоритовым режимом осадконакопления. Калийный пласт на Саскачеванском месторождении размещается в толще формации эвапоритов прерий на глубине около 1000 м. В кровле залегает каменная соль мощностью 15-20 м. Выше расположен второй пласт красноцветных аргиллитов, над которым залегает водоносная толща аргиллитов, известняков, доломитов и ангидрита формации Даусон Бей. Наиболее острой проблемой калийных рудников во всем мире является их затопление. В Саскачеване из семнадцати стволов калийных шахт, пущенных в эксплуатацию, пять имели большие притоки воды или были полностью затоплены при их прохождении. Шесть из девяти рудников в провинции столкнулись с большими притоками воды на различных участках шахтных полей. В районе калийной залежи Esterhazy, в середине декабря 2006 г. зафиксированы первые признаки притока рассолов. По результатам исследований к третьей декаде января 2007 г. приток составлял от 20 до 25 тыс. галлонов (около 76–95 литров) в минуту. Другой проблемой калийных рудников является техногенная сейсмичность. До начала ведения горных работ, а также в течение первых 14 лет их ведения сейсмическая лаборатория Службы геологической съемки Канады (GSC) не фиксировала, например, в районе Esterhazy наличия сейсмической активности. Первое землетрясение силой 3,0 балла по шкале Рихтера произошло в районе шахты K-1 7 ноября 1976 года. Эпицентр находился над пройденными выработками, при осмотре которых не было выявлено никаких повреждений. Начиная с 1976 года вблизи обоих действующих рудников (К-1 и К-2) произошло несколько десятков землетрясений с максимальной силой 3,7 балла.

На калийных рудниках Германии основной объект разработок - хартзальц (твердая соль), сильвинсодержащая руда с высоким содержанием примесных сульфатов магния и кальция. Многочисленные месторождения калийных солей Германии связаны с цехштейновыми галогенными толщами, широко развитыми в пределах Северо-Германской низменности. Цехштейновый бассейн осадконакопления занимал огромную площадь от Северной Британии, захватывая Северное море, Нидерланды, Данию, значительную часть Германии и Польши.

К настоящему времени одна из самых насущных проблем калийной промышленности Германии - затопление десятков как действующих, так и строящихся рудников. В начальный период существования предприятий объем имеющейся информации о геолого-гидрогеологическом строении участков месторождений, вовлекавшихся в добычу, являлся недостаточным для установления причин прорывов рассолов и вод в выработки. В дальнейшем стали уменьшать степень извлечения руды из залежи, применять сухую и гидравлическую закладку отработанных камер. Но даже такие изменения в технологии не смогли сохранить рудники: «Фон дер Гейдт», «Мантейфель», «Агата», «Нейестассфурт III» и др. - от проникновения рассолов через ангидрит или тектонические нарушения. Принятая технология работ на рудниках: «Бернтероде», «Зольштадт», «Бисмарк - Галль - Бишоффероде», «Нейе-Блейхероде» - предотвращала интенсификацию развития водопроводящих каналов. Свыше 30 лет горные работы продолжались при непрекращающихся небольших притоках рассолов. Водопроявления на рудниках «Ренгардсбрунн» (Ганновер) и «Саксен-Веймар» (Вера-Фульда) возникали при вскрытии выработками зон тектонических нарушений. Развитие мониторинговых исследований в конце 20-х гг. прошлого века позволило разработать меры для каждого калиеносного района Германии, что привело к резкому сокращению катастрофических последствий. Рекомендовалось проводить очистные работы не ближе 200 м от соляного зеркала, не отрабатывать вторичные соли, оставлять защитные пачки соли в кровле камер под соленосной глиной или ангидритом, не соединять выработками смежные шахтные поля. При камерной системе разработки предусматривалась закладка отработанных камер.

На калийных рудниках Германии также применяются сейсмологические системы мониторинга, необходимые для контроля горных предприятий. В 1986 г., например, в Центральной Германии ими зафиксировано техногенное землетрясение, обусловленное добычей калийной соли, с магнитудой 5,4. Из других мониторинговых систем на рудниках Германии наиболее широко используют прямые методы определения состояния геологической среды. В первую очередь, это наблюдения за оседаниями земной поверхности на подработанных территориях. В связи с многочисленными случаями затопления калийных рудников здесь детально отработаны методы ведения гидрогеологического мониторинга.

Старобинское месторождение калийных солей (Белоруссия) открыто в 1949 г. в 130 км к югу от Минска при проведении поисково-разведочного бурения на нефть и эксплуатируется четырьмя подземными рудниками производственного объединения «Беларуськалий» с 1961 г. с суммарной годовой добычей около 40 млн. т руды. Месторождение связано с соленосной верхнедевонской формацией, развитой в Припятском прогибе, и структурно ограничено по площади контурами одноименной локальной синклинали с максимальными углами падения пород до 4-6°. Оно входит в состав Белорусского калиеносного бассейна как один из главных (наряду с Петриковским месторождением) промышленных объектов.

Фаменская соленосная толща на участке месторождения имеет мощность от 190 до 580 м и представлена чередованием субгоризонтально залегающих пачек соляных (преимущественно каменная соль мощностью до 65 м) и глинисто-карбонатных (мощностью до 43 м) пород. В разрезах соляных пачек выявлено четыре калиеносных горизонта, залегающих в интервале глубин 365-1355 м и отстоящих друг от друга на 60-190 м. Промышленное значение имеют 2-й и 3-й горизонты. Соленосная толща перекрыта мощной (230-400 м) толщей глинисто-песчанистых пород фаменского возраста, являющейся водоупором. Выше ее залегают верхнемеловые песчаники и мел (15-30 м), палеогеновые глауконит-кварцевые пески (до35 м), а также четвертичные пески, гравий и суглинки (35-80 м).

Практически полное отсутствие подземных вод в соленосной свите, субгоризонтальное залегание ее пластов, их выдержанность по простиранию, отсутствие проявлений соляной тектоники и слабое развитие разрывных нарушений - благоприятные факторы для проведения подземной разработки месторождения. Гидрогеологические условия Старобинского месторождения, характеризующиеся наличием больших площадей с неглубоким залеганием подземных вод, способствуют активизации процессов подтопления, заболачивания и затопления. По мере расширения фронта очистных работ и развития процессов сдвижения, площадь территорий, подверженных подтоплению, заболачиванию и затоплению, растет и, по данным прогнозных расчетов, на конец процесса сдвижения составит 50 % всей площади месторождения.

На калийных рудниках Белоруссии используется примерно такой же набор мониторинговых исследований, что и на рудниках России. Данное обстоятельство обусловлено тем, что начиная с советских времен для этих рудников действовала одна инструкция ( «Методические указания по выбору мер охраны для существующих, строящихся и проектируемых объектов на территориях, подрабатываемых калийными рудниками». Л.,1976) и методическое руководство осуществлял один отраслевой НИИ (Всесоюзный научно-исследовательский институт галургии (ВНИИГ)). Однако, благодаря более благоприятным условиям проведения подземной разработки белорусских калийных руд, мониторинг геологической среды осуществляется здесь в гораздо меньших объемах.

Таким образом, на крупнейших калийных рудниках мира, кроме рудников Старобинского месторождения, отмечаются те же последствия техногенного воздействия на их геологическую среду, что и при разработке ВКСБ, и заключаются они, в первую очередь, в повышении сейсмичности регионов и затоплении рудников.

Освоение Верхнекамского соленосного бассейна (ВКСБ) началось после его открытия в 1925 г. В настоящее время ОАО “Уралкалий” и ОАО “Сильвинит” производят около 20 % от мирового объема калийных удобрений (рис.1). Подземные горные работы, производимые на калийных рудниках, - основной фактор техногенного воздействия на геологическую среду Верхнекамского соленосного бассейна. К ВКСБ относится крупная площадь сплошного развития соленосных отложений с пластами каменной соли, сильвинита и карналлитовой породы в единой структуре - Соликамской впадине, расположенной в пределах Предуральского краевого прогиба и ограниченной с запада Восточно-Европейской платформой, а с востока – Западно-Уральской зоной складчатости. Она занимает площадь 11847км2, приурочена преимущественно к левобережной части р. Камы и вытянута примерно на 200 км в меридиональном направлении и до 50 км – в широтном. Большую часть Верхнекамского соленосного бассейна (Соликамской впадины) занимает одноименное месторождение калийных солей, представляющее собой многопластовую залежь, вытянутую в меридиональном направлении и делящуюся субширотными структурами (Боровицкой и Дуринской) на три обособленные части: северную, центральную и южную. Площадь развития калийных солей, залегающих на глубинах до 600 м, составляет 3750 км2. В строении бассейна выделяют три существенно различных по составу комплекса пород осадочного чехла – нефтеносный подсолевой, соленосный и водоносный надсолевой.

Подсолевые отложения охарактеризованы по данным бурения на нефть. Сложены они породами верхнего протерозоя и среднего-верхнего палеозоя. Протерозойские отложения представлены переслаиванием песчаников, алевролитов и аргиллитов с туффитами. На них с размывом лежит карбонатный

комплекс палеозоя. Общая мощность этих отложений составляет более четырех тысяч метров.

Выделяют два типа разрезов среднего и верхнего палеозоя - рифовый и межрифовый. Породы представлены известняками, в различной степени

доломитизированными, с прослоями песчаников. Повсеместно присутствует

фауна: фораминиферы, остракоды, брахиоподы, криноидеи и т.п. Нефть пространственно связана с рифовыми образованиями. Размеры девонско-турнейских «рифовых структур» - от одного до десяти километров в плане, а их высота составляет 40 - 80 м (рис. 2).

Отложения ассельского и сакмарского ярусов нижней перми представлены известняками, участками окремнелыми, прослоями органогенно-детритовыми, иногда глинистыми, битуминозными. Мощность их изменяется от 120 до 450 м (рис. 3).

В составе артинского яруса нижней перми выделяют несколько одновозрастных комплексов, фациально сменяющих друг друга в широтном направлении и объединенных в саргинский горизонт. На западе Соликамской впадины это глины и мергели дивьинской свиты, а на востоке - обломочные- обломочные породы (конгломераты, песчаники) урминской свиты (артинский терригенный клин). Средняя мощность саргинского горизонта составляет около 125-130 метров. Артинские «рифы» по размерам меньше фаменских и не всегда расположены в контурах девонских структур.

Березниковская свита (P1br) кунгурского яруса, развитая в центральной части ВКСБ, представлена глинисто-ангидритовой и соляной толщами, последняя включает калийную залежь. Мощность отложений свиты составляет 150-800 м.

Глинисто-ангидритовая толща (ГАТ – Р1br1) сложена мергелями и аргиллитами, доломитами и, в меньшей степени, известняками, ангидритовой породой, каменной солью, алевролитами, песчаниками. В западных разрезах преобладают глинисто-мергельные и карбонатные породы, в восточных - алевролиты и песчаники. Ангидритовые породы распространены по площади равномерно. В разрезе толщи встречаются линзы и пласты каменной соли мощностью до 12 м. Мощность толщи изменяется от 145 м (на западе) до 325 м (на востоке), в среднем составляя около 230 м.

Соляная толща общей мощностью до 550 м подразделяется (снизу вверх) на подстилающую каменную соль (ПдКС - Р1br2), калийную залежь (Р1br3) и покровную каменную соль (ПКС - Р1br4). Кровля ПКС является верхней границей


загрузка...