Асинхронный электропривод электромеханических систем с оптимальными режимами по критерию энергосбережения (10.10.2011)

Автор: Макаров Валерий Геннадьевич

Таким образом, экспериментально подтверждены адекватность и высокая точность математической модели АД с учетом насыщения магнитопровода и потерь в стали, а также эффективность применения методики оптимального частотно-токового управления асинхронным электроприводом.

ЗАКЛЮЧЕНИЕ И ОСНОВНЫЕ ВЫВОДЫ ПО ДИССЕРТАЦИИ

1. Разработана концепция построения асинхронного электропривода с промежуточным сигналом, пропорциональным требуемому моменту, с использованием доступной информации о параметрах асинхронного двигателя и нагрузки, позволяющая строить энергосберегающие асинхронные электроприводы общепромышленного назначения.

2. Разработана методика преобразования уравнений линейной математической модели трехфазного АД в фазных координатных осях к системе координат d, q, позволяющая создать гипотетическую физическую модель ОЭМ и допускающая применение традиционных методик проектирования.

3. Предложена методика учета насыщения магнитопровода и потерь в стали в математической модели ОЭМ на основе трехфазного АД с помощью теории трансформатора и введением эквивалентных обмоток потерь в стали, позволяющая повысить точность расчетов при моделировании.

4. Предложена методика решения задачи оптимального частотно-токового управления асинхронными электроприводами, позволяющая учесть насыщение магнитопровода и потери в стали, по критерию минимума мощности потерь в обмотках и сердечниках двигателя. Проведен синтез системы частотно-токового управления асинхронного электропривода с учетом насыщения магнитопровода и потерь в стали двигателя.

5. На основании результатов решения задачи оптимального частотно-токового управления асинхронным электроприводом предложена структура системы векторного управления асинхронным электроприводом, позволяющая формировать оптимальное по критерию энергосбережения потокосцепление ротора.

6. На основании анализа системных свойств разомкнутого асинхронного электропривода с силовым полупроводниковым преобразователем установлено, что данный электропривод обладает свойством полной управляемости; показано, что порядок управляемости дает качественную оценку динамики переменных состояния электропривода; существует возможность наблюдать токи короткозамкнутого ротора на основании измеряемых напряжений и токов фаз статора; получены уравнения функций чувствительности по параметрам электропривода, позволяющие оценить влияние отклонений параметров на процессы и характеристики асинхронного электропривода.

7. Предложена методика идентификации параметров и процессов асинхронного электропривода непрерывным градиентным методом поиска минимума функции от невязок уравнений электропривода, обеспечивающая адаптацию управляющих устройств к изменяющимся условиям функционирования.

8. Разработана методика учета насыщения магнитопровода в системе векторного управления асинхронным электроприводом, позволяющая наиболее полно реализовать возможности векторного управления. Проведен синтез системы векторного управления асинхронным электроприводом с учетом насыщения магнитопровода.

9. Разработаны структурные схемы устройства генерации функций чувствительности разомкнутого асинхронного электропривода и асинхронного электропривода с векторным управлением при формировании оптимального потокосцепления ротора, а также функциональные схемы устройств идентификации параметров и процессов асинхронного электропривода; асинхронного электропривода с устройством наблюдения токов короткозамкнутого ротора; асинхронного электропривода с оптимальным частотно-токовым управлением по критерию энергосбережения с учетом насыщения магнитопровода и потерь в стали; асинхронного электропривода с векторным управлением при учете насыщения магнитопровода. Функциональные схемы сопровождаются расчетными соотношениями и допускают реализацию на серийно выпускаемых элементах.

10. Разработанные алгоритмы поиска оптимальных по критерию энергосбережения токов асинхронного электропривода с учетом насыщения магнитопровода и потерь в стали; оптимального управления токами асинхронного электропривода с учетом насыщения магнитопровода и потерь в стали; идентификации параметров и процессов асинхронного электропривода; анализа управляемости, наблюдаемости, чувствительности асинхронного электропривода; векторного управления асинхронным электроприводом с учетом насыщения магнитопровода позволяют реализовать эффективное энерго- и ресурсосбережение и могут быть применены в широком классе асинхронных электроприводов.

11. Разработаны математические модели асинхронных электроприводов с учетом насыщения магнитопровода и потерь в стали двигателя, позволяющие рассчитать характеристики и проанализировать переходные и установившиеся процессы.

Основное содержание диссертации

отражено в следующих публикациях

Монография

1. Макаров В. Г. Асинхронный электропривод с оптимальными режимами работы: монография / В. Г. Макаров. – Казань: Казан. гос. технол. ун-т, 2010. – 300 с.

Статьи в научных изданиях из перечня ВАК РФ

2. Макаров В. Г. Применение теории обобщенной электрической машины к трехфазному асинхронному двигателю / В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2009. – № 11 – 12. – С. 84 – 97.

3. Макаров В. Г. Гипотетическая физическая модель обобщенной электрической машины на основе трехфазного асинхронного двигателя / В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2010. – № 1 – 2. – С. 94 – 108.

4. Макаров В. Г. Идентификация параметров трехфазного асинхронного двигателя / В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2010. – № 3 – 4. – С. 88 – 101.

5. Макаров В. Г. Идентификация параметров и токов ротора трехфазного асинхронного двигателя / В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2010. – № 7 – 8. – С. 101 – 116.

6. Макаров В. Г. Анализ точности математической модели трехфазного асинхронного двигателя / В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2010. – № 11 – 12. – С. 115 – 124.

7. Афанасьев А. Ю. Математическая модель трехфазного асинхронного двигателя с учетом нелинейности магнитопровода / А. Ю. Афанасьев, В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2011. – № 1 – 2. – С. 93 – 100.

8. Макаров В. Г. Оптимальное управление токами трехфазного асинхронного двигателя / В. Г. Макаров // Известия вузов. Проблемы энергетики. – 2011. – № 3 – 4. – С. 91 – 98.

9. Макаров В. Г. Оценивание параметров трехфазного асинхронного двигателя / В. Г. Макаров, Ю. А. Яковлев // Вестник Казанского технологического университета. – 2010. – № 9. – С. 418 – 425.

10. Макаров В. Г. Анализ методов учета нелинейности магнитопровода и потерь в стали в математической модели асинхронного двигателя / В. Г. Макаров, В. А. Матюшин // Вестник Казанского технологического университета. – 2010. – № 11. – С. 171 – 179.

11. Макаров В. Г. Оптимальное управление токами электрических машин / В. Г. Макаров, В. А. Матюшин // Вестник Казанского технологического университета. – 2010. – № 11. – С. 186 – 195.

12. Макаров В. Г. Анализ состояния и перспективы развития работ по идентификации параметров электрических машин / В. Г. Макаров, Ю. А. Яковлев // Вестник Казанского технологического университета. Т. 14. – 2011. – № 1. – С. 134 – 144.

13. Макаров В. Г. Управляемость трехфазного асинхронного двигателя / В. Г. Макаров // Вестник Казанского технологического университета. Т. 14. – 2011. – № 5. – С. 90 – 95.

14. Макаров В. Г. Наблюдаемость трехфазного асинхронного двигателя / В. Г. Макаров // Вестник Казанского технологического университета. Т. 14. – 2011. – № 5. – С. 104 – 108.

15. Макаров В. Г. Чувствительность трехфазного асинхронного двигателя / В. Г. Макаров // Вестник Казанского технологического университета. Т. 14. – 2011. – № 5. – С. 112 – 117.

16. Макаров В. Г. Актуальные проблемы асинхронного электропривода и методы их решения / В. Г. Макаров // Вестник Казанского технологического университета. Т. 14. – 2011. – № 6. – С. 79 – 93.

17. Макаров В. Г. Анализ современного состояния теории и практики асинхронного электропривода / В. Г. Макаров // Вестник Казанского технологического университета. Т. 14. – 2011. – № 6. – С. 109 – 120.

18. Макаров В. Г. Анализ точности математической модели трехфазного асинхронного двигателя с учетом нелинейности магнитопровода / В. Г. Макаров, А. Ю. Афанасьев, В. А. Матюшин // Вестник Казанского технологического университета. Т. 14. – 2011. – № 5. – С. 124 – 131.

19. Макаров В. Г. Анализ точности математической модели трехфазного асинхронного двигателя с учетом нелинейности магнитопровода и потерь в стали / В. Г. Макаров, А. Ю. Афанасьев, В. А. Матюшин // Вестник Казанского технологического университета. Т. 14. – 2011. – № 6. – С. 100 – 104.

Статьи в других научных изданиях

20. Афанасьев А. Ю. Применение теории обобщенной машины для асинхронного электродвигателя с учетом нелинейности магнитопровода / А. Ю. Афанасьев, В. Г. Макаров, Е. В. Тумаева // Межвуз. сб. науч. тр. «Электротехнические системы и комплексы». – 2008. – Вып. 15. – С. 40 – 51.

21. Макаров В. Г. Идентификация параметров трехфазного асинхронного двигателя / В. Г. Макаров // Электрика. – 2009. – № 10. – С. 32 – 37.

22. Макаров В. Г. Математическая модель асинхронного двигателя с позиций теории обобщенной машины / В. Г. Макаров // Межвуз. сб. науч. тр. «Электротехнические системы и комплексы». – 2009. – Вып. 16. – С. 62 – 71.


загрузка...