Научное обоснование и технологическое обеспечение применения дисперсных модификаторов и рафинирующих смесей для внепечной обработки чугунов и сталей (10.05.2011)

Автор: Чайкин Владимир Андреевич

МК 11 50/50 51,4 34,6 Остальное

МК 12 34/66 36,0 45,7 Остальное

МК 21 66/34 66,8 23,5 Остальное

УСМ 100/0 99,4 - Остальное

Модификатор МК21 оказался эффективнее ФС75 и ФС65Ба4 с наибольшей живучестью. Установлено, что модификатор МК21 более эффективно устраняет отбел при высоких температурах 1400…1440 °С, что очень важно для чугуна марки СЧ30, для получения которой требуется существенный перегрев.

Эффективность разработанного модификатора подтвердилась и промышленными испытаниями. СЧ30, выплавленный в электродуговой печи, обрабатывали МК21 в количестве 0,3 % в ковше емкостью 8 тонн. При вводе в ковш достигались стабильность и высокая эффективность модифицирования. Обеспечивались механические свойства и отсутствие отбела в отливках. Эффект модифицирования расплава МК21 во всех случаях сохранялся до конца разливки, которая длилась в течение 35 – 45 минут, что подтвердило высокую живучесть модификатора. При модифицировании чугуна в разливочном ковше, где отсутствует шлак, достаточно 0,08 % МК21 для обеспечения требуемой склонности к отбелу, что существенно ниже, чем в раздаточном ковше и в лабораторных условиях.

Агрегативная и кинетическая устойчивость модификатора МК21 подтверждена моделированием процесса модифицирования в программе FLOW-3D. Процесс моделирования заключался в изучении поведения частиц модификаторов МК21 и ФС75 в расплаве при заполнении ими полости литейной формы отливки. Для моделирования была использована технология формы, разработанная в ОАО «ЧАЗ». В форме находятся четыре отливки. Моделировали заполнение только одной отливки, принимая в расчет их симметричное расположение (рис. 2).

Рис. 2. Расчетная модель

Для математического моделирования процесса заполнения формы расплавом была использована система уравнений гидродинамики Навье-Стокса в приближении несжимаемой жидкости, дополненная уравнением неразрывности, уравнением Фурье-Кирхгофа для теплопереноса в расплаве и уравнением Фурье для теплопереноса в литейной форме. В декартовой системе координат уравнения записываются в следующем виде:

- вектор гравитации.

Приняты следующие гидродинамические граничные условия:

, где W – вертикальная скорость течения расплава при его заливке в форму.

Тепловые граничные условия:

????????????o?И

????????????§$???

??????u

?????&?

На внутренней поверхности литейной формы используется граничное условие III рода:

– температуры расплава и литейной формы на внутренней поверхности этой формы.

– температуры формы и окружающей среды на внешней поверхности формы.

= 0,3 мм.

Для моделирования частиц модификатора к вышеприведенной системе уравнений добавляются уравнения поведения частиц в потоке расплава:

– компоненты вектора скорости диффузии частицы. Каждая из этих компонент определяется по формуле:

, (14)

– концентрация частиц; Dр – коэффициент диффузии частиц.

При моделировании частиц в потоке в программе FLOW-3D использовали опцию «полного взаимодействия» в системе частица-расплав, Частицы моделировали как идеальные сферы с заданным постоянным размером и плотностью без возможности их изменения в процессе течения расплава. В расплаве, входящем в полость литейной формы, задавалось случайное начальное распределение частиц.

Анализ распределения частиц модификаторов в отливке в зависимости от времени заполнения формы выполнили для характерного места отливки – наклонной стенки, в трех её частях: нижней, средней и верхней (рис. 3). Моделирование показало, что дисперсные частицы C и Si равномерно распределились по всему объему отливки и с течением времени их распределение на изучаемых высотах не менялось. Это подтверждает, что частицы C и Si обладают высокой седиментационной устойчивостью, они «замутняют» расплав и активно способствуют зарождению графитной фазы, что обеспечивает стабильность процесса модифицирования на всех участках отливки в течение всего времени кристаллизации.

Рис. 3. Изменение во времени количества частиц графита (1), кремния (2) и ФС75 (3) в наклонной стенке: а– в нижней части, б– в верхней части

Крупные частицы ФС75, наоборот, всплывают на поверхность металла в процессе всей заливки и в конце ее оказываются только в верхней части отливки. Поэтому в некоторых участках отливки с течением времени частицы ФС75 вообще отсутствуют. Таким образом, при такой конфигурации детали и расположении отливок в форме наиболее высока вероятность возникновения отбела в наклонной и задней вертикальной стенках, что и подтвердил заводской опыт работы.

На основании проведенных экспериментов внедрен технологический процесс модифицирования в разливочном ковше чугуна СЧ30 для отливки «клин фрикционный».

Шестая глава посвящена разработке универсального смесевого дисперсного модификатора для внутриформенной обработки чугуна и стали. В основу модификатора положен дисперсный КСМ. Для обеспечения технологичности в него добавили УСМ. Известно, что диспергирование препятствует смачиваемости частиц расплавом, поэтому для обеспечения растворимости модификатора в его состав ввели сублимирующие соединения Mg. Пузырьки паров Mg взрыхляют поверхностные слои модификатора, облегчая проникновение расплава в промежутки между частицами, обеспечивая тем самым их последовательную растворимость. Экспериментальным путем установили рациональный химический состав модификатора: С=8…15 %, Si = 50…60 %, соединения Mg = 4…6 %, остальное Fe и примеси. Модификатор отличался высокой технологичностью, возможностью автоматизированной загрузки в форму. Его засыпали в стояк формы. Модификатору присвоена марка МКМг19. Средний размер частиц модификатора составил 20 мкм. При вводе 0,05…0,2 % материала в 1 см3 расплава вносится (1,19…9,34)•106 штук частиц модификатора.

Обязательными условиями при разработке модификатора было сохранение существующих конструкций литниковых систем и равномерное распределение частиц модификатора в отливках. Модификатор размещали в зумпфе литейной формы. Равномерность распределения частиц должна обеспечиться турбулентностью потока и высокой их дисперсностью. Для проверки равномерности распределения частиц модификатора в отливке произвели моделирование процесса внутриформенного модифицирования в программе FLOW-3D. Для моделирования процесса использована предыдущая схема модели (рис. 2). Процесс моделирования заключался в изучении поведения частиц модификатора в зумпфе литейной формы при заполнении ее чугуном и в расплаве при заполнении им полости отливки. Для математического моделирования процесса заполнения формы расплавом была использована система уравнений гидродинамики Навье-Стокса в приближении несжимаемой жидкости (5), дополненная уравнением неразрывности (6), уравнением Фурье-Кирхгофа для теплопереноса в расплаве (7) и уравнением Фурье для теплопереноса в литейной форме (8). Граничные гидродинамические и тепловые условия не изменяли.

Для моделирования распределения частиц модификатора в расплаве к вышеприведенным системам уравнений добавляли уравнения поведения частиц в потоке металла (12-13).

Вт) процесс его растворения завершается без остатка, частицы равномерно распределяются в отливке, что говорит об эффективном модифицировании (рис. 4).

Рис. 4. Изменение количества частиц в отливке в процессе заливки формы:

Вт, концентрация магния в модификаторе 5%

Для подтверждения теоретических предпосылок произвели испытания разработанного модификатора в условиях действующего производства. Эксперименты с СЧ и ВЧ проводили в условиях ОАО «АВТОВАЗ». Отливка 2101-1601093 «Диск сцепления нажимной» из СЧ перлитного класса марки Gh190 в силу своих конструктивных особенностей всегда имеет кромочный отбел.

Ковшовое модифицирование чугуна ферросилицием ФС75 и ФС65Ба4, а также модификаторами зарубежного производства не устраняло этот брак, поэтому отливки отжигали. Результаты экспериментов показали высокую эффективность модификатора МКМг19. Уже при добавках в форму модификатора 0,05 % от ее металлоемкости отбеленный слой уменьшился на 90 %. При вводе в форму 0,1 % модификатора отбел в отливке устранен полностью, обеспечена благоприятная микроструктура и твердость.

Достаточное количество модификатора для внутриформенного модифицирования ВЧ составляет 0,15 %. Его определяли на проблемной отливке 12101-3103015 «Ступица переднего колеса» из ВЧ50.

Эффективность внутриформенного модифицирования МКМГ19 определили на отливках из стали 110Г13Л, которая наиболее склонна к транскристаллизации, ликвации и усадке. Конструктивные особенности отливки 74-34-501 «Звено гусеницы» делают ее наиболее восприимчивой к усадочным раковинам в перемычке звеньев между цевкой заднего хода и беговой дорожкой. В условиях сталелитейного цеха ОАО «Чебоксарский агрегатный завод» оптимальной оказалась добавка в форму 0,2 % модификатора МКМг19 от ее металлоемкости. Количество пор и раковин в отливке сократилось на 80 %, устранена транскристаллизация, получены благоприятная микроструктура и механические свойства стали. Прочность на изгиб литого модифицированного трака увеличилась на 4,89 %.


загрузка...