Вулканогенно-осадочный литогенез в наземной рифтовой зоне Исландии (09.02.2009)

Автор: Гептнер Альфред Романович

Основными компонентами паралического парагенеза являются подушечные лавы и гиалокластиты. Подушечные лавы и гиалокластиты неоднократно сменяют друг друга в разрезе, а по латерали связаны фациальными переходами. Туфы, т.е. продукты эксплозивной деятельности практически отсутствуют. Формирование отложений происходило при неоднократном и значительном перемещении края ледниковых покровов, спускавшихся на шельф Исландии. Суммарная наблюдавшаяся мощность плейстоценовых паралических отложений в береговых разрезах достигает 600–700 метров.

Горизонты субаэральных лав и основных морен, залегающие среди подушечных лав и гиалокластитов маркируют периоды прекращения подводных извержений и распространения ледниковых покровов на шельф соответственно. Широкое развитие гиалокластики в составе паралического парагенеза обусловлено спецификой подводного извержения базальтов, заключающееся в том, что наряду с формированием подушечных лав большую роль играло подводное лавовое фонтанирование (пульверизация и разбрызгивание раскаленного расплава в воду), продуцирующее большое количество гиалокластики.

Гранулометрический и минералогический состав

вулканотерригенных отложений платобазальтов

Во время накопления платобазальтов кластический материал формировался главным образом за счёт разрушения и переотложения свежей, несцементированной тефры (синхронно-переотложенный материал). Это определило специфику минералого-петрографического состава и гранулометрический состав образовавшихся пород. Гравелиты глыбовые, валунные и галечные накопления в платобазальтах имеют локальное распространение. Главную роль в строении вулканотерригенных отложений играют песчаники, пески и алевролиты. Слоистость в тонкозернистых отложениях горизонтальная, нечёткая, слабо проявляющаяся при смене гранулометрического состава обломков. В горизонтах, соответствующих времени активной деятельности крупных вулканических аппаратов центрального типа в толще миоценовых платобазальтов присутствуют диамиктиты, слагающие неслоистые и несортированные отложения селевых потоков и гравитационных обвалов. Мелкозернистый состав вулканотерригенных отложений, слабая обработка кластических компонентов, плохо выраженная горизонтальная слоистость с линзовидным распределением материала разного гранулометрического состава указывают на накопление основной массы вулканотерригенных пород мелкими, временно существовавшими потоками. Их формирование произошло в основном за счёт выпавшей из воздуха тефры и переотложения её ветром и временными водотоками. На периферии конусов выноса возникали благоприятные условия для образования озерных и болотных отложений. Важно подчеркнуть, что в составе миоценовых вулканогенно-осадочных отложений нет пород, включающих терригенный глинистый материал. Этот факт определенно указывает на отсутствие процесса преобразования (выветривания) рыхлых осадков на поверхности лав или переотложения продуктов гидротермально измененных базальтоидов.

Отложения на наземных и подводных склонах вулканов

Наиболее активным и мощным агентом разрушения лавовых толщ были ледники, с появлением которых связано возникновение глубоко расчлененного рельефа. В это время формируются отложения разного генезиса, содержащие большое количество базальтовой гиалокластики – продукта подледных и подводных извержений. На суше особенности развития ледниковых покровов целиком или в значительной степени определяли существование помимо морен и водноледниковых образований появление других осадочных отложений, среди которых важную роль играют коллювиальные, делювиальные, солифлюкционные накопления.

Главным фактором, влиявшим в ледниковый период на появление и формирование основных особенностей вулканогенно-осадочных отложений, являлся подлёдный (подводный) вулканизм. В первую очередь это сказалось на разнообразии отложений, формировавшихся на склонах и по периферии вулканических построек действовавших в интрагляциальных, а на шельфе в морских условиях (подводный коллювий, субаэральный коллювий, тефроделювий). Склоновые отложения четко подразделяются на две группы. Одну, наиболее широко распространенную, составляют отложения, формировавшиеся одновременно с вулканическими извержениями. Это склоновые отложения синхронные извержению.

По составу и характеру распространения четко выделяется два типа эксплозивной вулканокластики базальтового состава. При наземных эксплозиях тефра полностью или в большей части состоит из окристаллизованного (тахилитового) материала, отлагавшегося на небольшом расстоянии от центров извержения, ареал распространения не превышает 20(30 км. В наземной обстановке на поверхности лавовых покровов тонкая фракция тефры легко переотлагалась ветром. Тефра, образующаяся при извержении расплава в воду или ледниковый покров (гидроэксплозии), содержит большое количество закалочного (сидеромеланового) стекла. Основная масса сидеромелановой тефры слагает насыпной конус или отлагается в водоёме в непосредственной близости от центра извержения и переотлагается затем течениями. При подлёдных извержениях рыхлый материал выносится селевыми потоками.

Другая группа склоновых отложений образуется при разрушении относительно древних вулканогенных отложений. Это гравитационный коллювий, представленный, в основном, грубообломочным материалом, слагающим более или менее мощные шлейфы подножья. В составе этой группы рассматриваются склоновые отложения, накапливавшиеся в зоне гидротермальных проявлений (сольфатарные поля) на поверхности земли, включающие большое количество глинистых минералов разного состава.

Глава 3. Вулканогенно-осадочные отложения

гляциального шельфа Исландии

Большие мощности вулканогенно-осадочных отложений формировались в пределах гляциального шельфа в конце плиоцена и особенно в плейстоцене. Эти отложения отличаются рядом характерных особенностей, связанных с извержением вулканов в толще ледникового покрова на побережье и в воде на прилегающем шельфе.

Состав, строение и мощность отложений гляциального шельфа Исландии зависят от того, образуются они в зоне рифтогенеза или на флангах рифтовой системы. В зоне рифтогенеза состав и количество обломочного материала определялся в основном характером и интенсивностью вулканических извержений. За пределами зоны активных вулканических проявлений главную роль при накоплении обломочного материала на шельфе играла экзарационная деятельность ледников.

За последние 4-5 млн. лет территория Исландии испытала около 20 ледниковых периодов [Geirsdottir et al., 2007]. Возраст наиболее древних ледниковых горизонтов (около 2 млн лет) установлен в разрезе шельфовых отложений группы Брейдавик. В составе этих отложений выделяется 12 горизонтов диамиктитов, переслаивающихся с водноледниковыми и вулканогенными отложениями отождествляемыми с ледниковыми периодами [Eiriksson, 1981]. Нельзя исключить и того, что часть диамиктитов могла быть сформирована катастрофическими водно-ледниковыми потоками при подлёдных извержениях и не может соответствовать периодам продвижения на шельф ледниковых покровов.

Вулканогенно-осадочные шельфовые отложений изучались в разрезах, протягивающиеся на большое расстояние на севере юге, юго-западе и острова. На севере, на полуострове Тьёднес в бухте Брейдавик в разрезе плиоцен-плейстоценовых отложений вскрыты отложения наземных и подводных извержений. Здесь гиалокластиты и наземные потоки лав переслаиваются с водноледниковыми отложениями, основными моренами и морскими осадками. Обломочный вулканотерригенный материал состоит главным образом из продуктов разрушения базальтов. Помимо базальтов были найдены единичные обломки гранитов и гнейсов, свидетельствующие о возможности поступления в прибрежные районы Исландии в плиоцене экзотического каменного материала с дрейфующим льдом. Рыхлые вулканогенные образования представлены главным образом мелкозернистой базальтовой (сидеромелановой) гиалокластикой, формировавшейся при извержениях в толще ледниковых покровов и на шельфе в открытом водном бассейне в результате гидроэксплозий.

На юге на расстоянии нескольких десятков километров в обрывах древнего клифа изучены вулканогенные и вулканотерригенные отложения, формировавшиеся при подлёдных извержениях на шельфе или на прилегающей к нему низменной части суши. В составе осадочных отложений основную роль играют донные морены (тиллиты), прослеженные на большое расстояние. Строение шельфовых отложений в этом районе подробно рассматривается в работе [Исландия и срединно-океанический хребет. Стратиграфия. Литология., 1978]

На юго-восточном фланге рифтовой зоны формирование шельфовых отложений исследовалось в пределах крупного эрозионного вреза в мощной толще вулканитов, непосредственно примыкающей к краю современного ледникового покрова Ватнайёкудль. Здесь вулканогенные, ледниковые (тиллиты) и морские (?) плиоцен-плейстоценовые отложения, заполняют крупную погребенную троговую долину. В днище трога залегает горизонт тиллита (основная морена), вложенный в мощную толщу подушечных лав. Максимальная мощность осадочных отложений оценивается в 120 метров. Осадочные отложения представлены тонко- и среднезернистыми, горизонтально- и волнисто-слоистыми мелкозернистыми тефрогенными песчаниками. Кровля осадочной толщи сильно эродирована ледником и перекрыта тиллитом. Среди крупных обломков в этом горизонте тиллита найдены породы, содержащие морские раковины пелеципод, фораминиферы и балянусы. На основании этих находок можно считать, что вулканогенно-осадочные отложения здесь формировались в прибрежной обстановке и частично сложены морскими осадками.

На полуострове Рейкьянес скважинами вскрыто более 1000 метров вулканогенно-осадочных шельфовых отложений, включающих раковины морских моллюсков. Разрез здесь состоит из многократного переслаивания осадочных отложений с гиалокластитами, залегающими в виде вытянутых линз, и потоками лав наземных базальтов. Извержения вулканов происходили, вероятно, на небольшой глубине и при неравномерном погружении этого участка шельфа. В этом случае также как это наблюдалось на современном острове-вулкане Суртсей (1963-66 гг.) выше уровня воды формировались пласты наземных лав [Thorarinsson, 1966, Einarsson, 1994].

Важнейшей чертой гляциального шельфа в зоне активных вулканических проявлений являются большие мощности отложений и наличие в их составе несортированных грубообломочных отложений катастрофических водных потоков. При извержении в толще льда формируются мощные потоки талых вод, транспортирующие и отлагающие большое количество несортированных осадков. Контакты и вложение неслоистых, несортированных осадков катастрофических потоков в слоистых отложений наблюдались в разрезах плиоцен-плейстоценовых шельфовых отложений. В селевых отложениях видны многочисленные следы размыва, крупные обломки, “плавающие” в средне- и тонкозернистом матриксе, состоящем из разнообразной гиалокластики и пористых обломков тефры.

Глава 4. Состав, строение и условия формирования

горизонтов базальтовой тефры в толще платобазальтов

В составе стратифицированных вулканогенных толщ платобазальтов эксплозивные образования имеют подчинённое значение. При наземных извержениях базальтов по способу образования в составе вулканокластического материала можно различать тефру фреатомагматических, фреатических и гидроэксплозивных извержений и лавового фонтанирования. По вещественному составу среди эксплозивных отложений платобазальтов выделяется три группы. Одну составляют витрокластические пеплы, состоящие в основном из обломков сидеромеланового стекла (сидеромелановая тефра). Нередко, помимо стекла, в небольшом количестве (первые проценты) присутствуют крупные кристаллы (вкрапленники) плагиоклазов и пироксенов. Другую группу составляют эксплозивные отложения, состоящие главным образом из литокластических обломков (шлаки, лапилли и более мелкие, обычно пористые обломки) с небольшим количеством стекла в мезостазисе (тахилитовая тефра). Смесь витро- и литокластики слагает третью группу тефровых отложений.

Типичной чертой строения разрезов платобазальтов является частое чередование отдельных потоков базальтовых лав с синхронно, и синхронно-переотложенной тефры, включающей мелко- и тонкозернистые фракции сидеромеланового стекла, основного компонента “красных горизонтов”. Суммарная мощность тефры в лавовой толще может достигать 2% при средней мощности горизонтов тефры 20(30 см. Каждый горизонт представляет собой серию сильно вытянутых линз, мощность отдельных раздувов в которых достигает иногда 50 см и более. Слои тефры различной мощности (от первых см. до 1 м), перекрывающиеся пластами лавы, окрашены в красный и красно-кирпичный цвет (red beds).

Особенно отчетливо эффект внешнего воздействия (прогрева) перекрывающих лавовых потоков виден тогда, когда породы "красных горизонтов" содержат крупноалевритовые и песчаные обломки сидеромеланового стекла. В этом случае центральные части обломков сохраняют первоначальный желто-зеленый или бледно-коричневый цвет, а окисленная зона красного цвета развита только по периферии частиц. В нижней части наиболее мощных слоёв тефры обломки сидеромеланового стекла остается не окисленными. Появление красного цвета связано с замещением в сидеромелановом стекле большей части закисного железа окисным. Это удалось подтвердить при прогреве в лабораторных условиях современной сидеромелановой кластики.

Зоны красного цвета появляется не только в слоях базальтовой тефры, но в рыхлых отложениях другого генезиса, если они содержали значительное количество сидеромелановых обломков в аллювиальных, озерных, ледниковых (тиллитах) отложениях, перекрытых потоками лав. Красный цвет в этих отложениях отмечается только в тех случаях, когда лавы изливались на осадки, слагавшие сухую поверхность. В подошве лавовых потоков, излившихся в озеро или на влажный и мягкий грунт в долине реки зона красного цвета отсутствует.

В литературе существует представление, что межбазальтовые горизонты красно-коричневого цвета (red beds), образовавшиеся на переотложенных ветром пеплах, являются почвенными образованиями, отражающими климатические условия значительно более теплые современных, сходные с латеритами [Saemundsson, 1978; Roaldest, 1883, Einarsson, 1994]. Проведённое нами исследование не подтверждают такой точки зрения. Межбазальтовые отложения красного цвета не имеют признаков почвообразования. Даже в самых мощных горизонтах (1(1,5 м) отсутствует вертикальная зональность, характерная для отложений, преобразованных почвенными процессами. Условия формирования “красных горизонтов” (red beds) базальтовой тефры или осадочных пород с участием сидеромеланового стекла установлены вполне определенно. Появление красного цвета в этих отложениях, связано с термическим воздействием излившихся на них лав.

Глава 5. Изменение пород на поверхности земли

и при воздействии низкотемпературных подземных вод

При изучении особенностей гидротермальной минерализации вулканитов на поверхности земли и глубоко в толще пород важно было выяснить, как долго вулканический материал, после извержения на поверхности земли или под водой, остаётся неизменённым, если на него не было воздействия нагретых подземных вод? Был проанализирован имеющийся в литературе и собственный материал о составе наземных и подводных лав и гиалокластитов, образовавшихся при извержении базальтов в мелководных озёрных, ледниково-озёрных и морских обстановках, а также на контакте расплава с водой и паром на поверхности земли. Полученные результаты показали, что кристаллические разности базальтов вне зоны воздействия нагретых вод длительное время (миллионы лет) остаются неизменёнными. Все минеральные образования, заполняющие газовые полости и трещины в наземных и подводных вулканитах, являются вторичными, образовавшимися после консолидации расплава.

В работе рассматривается пример взаимодействия базальтового расплава с водой в поверхностных условиях на примере вулканитов, сформировавшихся в зоне фреатических эксплозий на лавовом потоке. Исследованы особенности строения двух мощных лавовых покровов, заполнивших обширное обводнённое понижение в рельефе. Лавовое озеро молодого потока Лаксау, образовалось около 2000 лет назад, заполнив болотистое понижение на территории современного озера Миватн. Канатная структура на поверхности лав свидетельствует о большой подвижности расплава, вытекавшего из лавового озера и распространившегося вниз по долине реки на большое расстояние. Поток базальтовой лавы мощностью около 15 м во время фреатических взрывов и эксплозий подвергался интенсивному воздействию поверхностных вод и пара. Свидетелями этого являются многочисленные шлаковые конуса фреатических эксплозий и лавовые колоны, образовавшиеся в месте прорыва и быстрого охлаждения и консолидации расплава паром. Все породы здесь остались свежими, минералы вкрапленники (плагиоклазы и оливины) не имеют следов изменения. Мельчайшие газовые полости (визикулы) в лаве и в тефре фреатических эксплозий остаются пустыми. Результаты химических анализов свидетельствуют об отсутствии окисления и изменений в лавах и тефре, испытавших воздействие горячего пара и экспонировавшихся на поверхности земли в течение 2000 лет

Не обнаружено изменения состава базальтов, образовавшихся при подлёдных (подводных) извержениях. Верхняя и нижняя части крупных лавовых подушек отличаются по структуре: в нижних частях крупные газовые полости вытянуты вертикально, а в верхних зоны крупной везикульярности распределены согласно с рельефом поверхности подушки. Это связано с разной скоростью остывания и консолидации расплава в разных частях крупной подушечной отдельности. В верхней части, остывавшей быстрее, консолидация расплава происходила с поверхности, а в нижней медленнее в результате чего и газовая фаза могла дольше проникать вверх через расплав. Подушечные лавы не содержат вторичных минералов и не имеют признаков химического изменения (окисления) во время или после извержения. Содержание воды в базальтах в нижней и верхней частях лавовых подушек практически одинаково. Нижние части подушек обогащёны крупными кристаллами оливина и отличаются повышенным содержанием MgO, что определенно указывает на низкую вязкость расплава и возможность гравитационного оседания кристаллов оливина.

Изучение современных лав и тефры вулкана-острова Суртсей (извержение в 1963-66 гг.) также не даёт оснований согласиться с представлением о том, что при активном контакте базальтового расплава и воды (пара) происходит изменение состава расплава и формирование вещества, предшественника глинистых минералов [Шутов, 1982; Коссовская и др., 1982; Peacock, 1926 и др.]. Исследование гиалокластики на сканирующем микроскопе показало, что закалочное сидеромелановое стекло даже в самых мелких фракциях остаётся свежим. Сопоставление химического состава сидеромелановой гиалокластики и лав наземных извержений подтвердило их полное тождество и отсутствие следов воздействия воды на расплав в момент гидроэксплозий.

Палагонит и процесс палагонитизации

Исследовались особенности состава и распределения петрогенных элементов в закалочном сидеромелановом стекле и на начальной стадии его изменения на поверхности земли в современных климатических условиях и в толще движущегося льда, а также в обстановке гидротермального воздействия. Эта стадия изменения сидеромеланового стекла, рассматривающаяся во многих работах, называется палагонитизацией, а формирующееся вещество палагонитом.

Палагонит ( вещество непостоянного химического состава ( характерный продукт вторичного изменения базальтового закалочного стекла, широко распространенного на дне океанов и в составе вулканитов на океанических островах. Образование палагонита происходит как в водных условиях, так и на суше, в зоне изменения гиалокластитов и корок закалки на поверхности канатных и подушечных базальтов. Исследование вулканических стекол разного состава показало, что палагонит ( это продукт изменения только базальтового закалочного стекла ( сидеромелана. Анализ взаимоотношения сидеромелана, палагонита и комплекса вторичных минералов определённо указывает на эпигенетический характер процесса палагонитизации [Гептнер, 1977б]

Состав, структура и условия образования сидеромелановых стекол.

Сидеромеланом называется прозрачное и полупрозрачное базальтовое стекло, в котором рудные минералы отсутствуют полностью или встречаются очень редко, в то время как валовое содержание железа достигает 10, а иногда и более процентов. Предполагается, что генетическая связь палагонита и сидеромелана обусловлена существованием слабых структурных связей в силикатном каркасе этого типа стекла и равномерным распределением в нём большей части железа в виде легко окисляющейся двухвалентной формы.

Постепенный переход закалочного сидеромеланового стекла в тахилитовый тип породы и в раскристаллизованные базальты неоднократно наблюдался в шлифах при изучении даек, на поверхности субаэральных и субаквальных лавовых тел, крупных обломков субаэральной тефры вулкана и пульверизационных гиалокластитов.

Сходство сидеромелановых стекол и генетически связанных с ними базальтов подтверждено при исследовании химического состава подушечных лав, гидроэксплозивных сидеромелановых туфов и субаэральных потоков толеитовых базальтов, слагающих единый интрагляциальный вулканический комплекс трещинного извержения (хр. Каульфстиндар юго-западная Исландия), а также для сидеромелановой гидроэксплозивной тефры, стеклянной фазы обломков тефры и лав щелочных оливиновых базальтов наземного этапа извержения вулкана-острова Суртсей (1963-67 гг).


загрузка...