Диагностика и методы исследования фазовых и структурных превращений в многокомпонентных системах, подвергнутых воздействию температурных полей и электронной бомбардировки (07.09.2009)

Автор: Томилин Николай Алексеевич

Вторая глава посвящена научно-техническому обеспечению комплексных исследований в области создания материалов ЭТ.

В первом разделе главы отражено создание в 1981 г. отраслевого центра физико-химических методов исследования, предназначенного для удовлетворения нужд предприятий электронной промышленности – Научно-исследовательского учебного центра новых технологий и материалов «АТОМ» (НИЦ «АТОМ»), доктором технических наук, профессором, лауреатом Государственных премий СССР и РФ, заслуженным деятелем науки РФ В.П. Мариным. Кратко оценен вклад автора диссертации, работавшего в НИЦ «АТОМ» в течение 25 лет. Отмечено, что среди направлений деятельности НИЦ «АТОМ» важнейшими являлись три основных направления: научное, методическое и функциональное.

В научном направлении основные работы связаны с изучением состава, структуры и свойств материалов ЭТ, а именно:

- комплексным анализом состава и структуры материалов элементов и узлов приборов на этапе изготовления и длительной эксплуатации и изучение физико-химических свойств материалов, влияющих на важнейшие параметры приборов;

- исследованием физических и химических закономерностей, описывающих поведение материалов в различных условиях работы (в вакууме, газовой среде, при низких и повышенных температурах и давлениях);

- разработкой и созданием новых материалов и технологических процессов для мощных приборов СВЧ нового поколения.

Методическое направление связано с созданием и совершенствованием методик анализа состояния поверхности и объема материалов ЭТ и исследования их свойств, разработкой и созданием уникальных стендов и испытательных установок.

Функциональное направление – оказание научно-технической помощи в проведении исследований на предприятиях отрасли, анализ и выявление причин отказов изделий, подготовка специалистов для предприятий отрасли и др.

Отмечено, что автор диссертации лично занимался оснащением НИЦ «АТОМ» уникальным аналитическим оборудованием отечественного и импортного производства, предназначенным для исследования состава, структуры и свойств материалов. Описаны также технические характеристики оборудования и его возможности применительно к основным объектам исследования – материалам элементов и узлов изделий ЭТ (в частности, приборов СВЧ-диапазона). Это материалы катодов, кернов и подогревателей, керамические материалы и материалы припоев, материалы защитных анодных и катодных покрытий и др.

Помимо исследования таких объектов, значительная часть исследований посвящена изучению состава, структуры и свойств новых материалов (сплавов, металлических соединений, сложных оксидных фаз и др. в поли- и монокристаллическом состоянии). Отмечено в заключении раздела, что наличие уникального комплекса аналитического оборудования для исследования состава, структуры и свойств материалов, квалифицированных специалистов, а также использование комплексного подхода в исследовании основных физических свойств материалов обеспечили выполнение десятков НИР и ОКР.

Во втором разделе второй главы описано аналитическое оборудование и методы исследования, в том числе принципы создания установки для исследования комплекса физических свойств металлов и сплавов (многокомпонентных материалов) – Металловедческого комбайна (см. рис. 1).

Рис.1. Установка «Металловедческий комбайн»

Металловедческий комбайн, разработанный при непосредственном участии автора диссертации, является лабораторной установкой для исследования структуры и комплекса физических свойств металлов и сплавов в широком интервале температур. Основная задача, которая решена при разработке установки – обеспечение возможности одновременного исследования микроструктуры и физических свойств с достаточно высокой точностью до высоких температур на одном образце небольшого размера (2*2*20 мм) и удобной формы (что немаловажно при исследовании сплавов редких металлов).

Установка позволяет исследовать электросопротивление и тепловое расширение металлических образцов в интервале температур от 20 до 1800 оС при различных скоростях нагрева и охлаждения, наблюдать и фотографировать микроструктуру образца в интервале температур от 20 до 1500оС, проводить отжиг и закалку образца в струе инертного газа, определять температуру плавления (солидус) по методу Пирани в интервале температур 900…3400 оС. Причем исследование электросопротивления, теплового расширения и микроструктуры можно проводить одновременно. Металлические образцы нагреваются электрическим током в вакууме 5?10-6 мм рт.ст. (6,666?10-4 Па).

Детально описано устройство отдельных узлов, принцип работы установки в различных режимах, а также особенности создания методики исследования. Приводится характеристика точности определяемых параметров.

Установки, аналогичные по комплексу исследуемых свойств, в России и за рубежом не выпускаются.

Автор диссертации принимал непосредственное участие в модернизации установки, в плане усовершенствования систем регистрации сигналов и их дальнейшей обработки, а также расширения температурного интервала исследований теплового расширения и электросопротивления материалов в область низких температур. Описаны также результаты использования установки автором для изучения фазовых превращений в твердом состоянии, построения диаграмм состояния и диаграмм состав-свойство и разработки материалов с заданными свойствами.

Во втором разделе второй главы описываются и анализируются комплексная методика анализа материалов ИЭТ с использованием метода цветной катодолюминесценции (ЦКЛ) и особенности создания научно-диагностического комплекса на базе растрового электронного микроскопа / рентгеноспектрального микроанализатора и ЦКЛ-приставки с компьютерным обеспечением.

Показано, что метод растровой электронной микроскопии (РЭМ) в сочетании с методом рентгеноспектрального микроанализа (РСМА) является одним из наиболее востребованных и информативных методов при исследовании материалов ИЭТ. Обычно РЭМ-исследования проводят в режиме регистрация наиболее информативных сигналов, создаваемых вторичными электронами (ВЭ), обратноотраженными электронами (ООЭ), поглощенными электронами (ПЭ) и характеристическим рентгеновским излучением (ХРИ).

Некоторые серийно выпускаемые РЭМ также снабжены спектрометрами для регистрации спектров катодолюминесценции (длинноволнового светового излучения в УФ и видимой части спектра), возникающей при исследовании некоторых материалов ИЭТ, таких как диэлектрики и полупроводники. Исследование спектров катодолюминесценции (КЛ) в принципе позволяет получить информацию о наличии примесных атомов и структурных дефектов (дислокаций, вакансий) в таких материалах. Однако, относительная ограниченность использования этого метода в исследовании материалов ИЭТ связана c методологическими трудностями получения и интерпретации спектров. Так для получения спектра одного участка (или точки) поверхности исследуемого образца с достаточно высоким разрешением (10…20 нм) необходимо затратить десятки минут, причем в процессе исследования возможны изменения спектра КЛ, обусловленные длительным воздействием пучка электронов на образец.

Автором диссертации показано, что при исследовании катодолюминесценции ряда образцов материалов ЭТ с помощью РЭМ (с точки зрения достижения разумного компромисса между затрачиваемым временем и получаемой информацией) достаточно продуктивным является использование метода цветной катодолюминесценции (ЦКЛ), впервые разработанного на физическом факультете МГУ им. М.В. Ломоносова.

Особенностью представленной автором диагностики являются результаты проведенной совместно со специалистами Физического факультета МГУ работы по созданию научно-диагностического комплекса для исследования материалов на базе РЭМ/РСМА и разработанной катодолюминесцентной приставки. Этот комплекс позволяет проводить РЭМ исследования объектов в режимах одновременной регистрации различных сигналов: ВЭ, ООЭ, ПЭ, ХРИ и КЛ, причем регистрация сигнала катодолюминесценции может осуществляться в одном из режимов:

а) интегральной КЛ;

б) реальной цветной КЛ (ЦКЛ) (три канала RGВ);

в) ЦКЛ высокого спектрального разрешения (одиннадцать каналов) с разрешением 20…30 нм.

Изготовленная универсальная ЦКЛ-приставка, представляющая собой аппаратно-программный комплекс средств сопряжения РЭМ с IВМ РС совместимым компьютером, позволяет трансформировать практически любой РЭМ с аналоговым управлением в многоканальный прибор с цифровым управлением и обработкой информации.

КЛ-излучение, возбуждаемое в образце электронным пучком РЭМ, собирается зеркалом с поверхностью второго порядка, фокусируется на входном окне волоконно-оптической системы и разделяется на три эквивалентных оптических канала: “R”, “G” и “B”.

Для спектрального анализа КЛ излучения в реальных цветах используются широкополосные светофильтры (R, G, B), аналогичные по своим характеристикам, применяемым в цветном телевидении. После оптической фильтрации в каждом канале КЛ-сигналы преобразуются в электрические, усиливаются с помощью ФЭУ, оцифровываются с помощью АЦП и накапливаются в памяти компьютера, формируя, таким образом, цифровое РЭМ-изображение. Для спектрального анализа с повышенным спектральным разрешением используется набор из 11 светофильтров с полосой пропускания ~ 30 нм.

Анализируя технику эксперимента, констатируется, что в представленном комплексе реализованы принципы обобщенного многоканального РЭМ. Это позволяет ускорить и упростить пользователю получение, обработку и анализ РЭМ информации. Многомерное изображение формируется за один проход развертки и может быть записано на жесткий диск компьютера для последующей обработки. В зависимости от числа и типа используемых каналов из одного многомерного изображения может быть сформировано несколько РЭМ изображений с использованием специализированных программных алгоритмов и принципов цветного композитного контраста.

Управление большинством функций устройства (управление разверткой, накопление и обработка оцифрованных сигналов с каждого из входных каналов, микширование каналов, сохранение изображения и др.) осуществляется персональным компьютером, оснащенным интерфейсными платами и специализированным программным обеспечением. Гибкое взаимодействие аппаратной и программной части устройства в составе научно-диагностического комплекса позволяет проводить электронно-микроскопический и химический анализ микрообъектов в качественно новых режимах работы, значительно повышая информативность, производительность и эффективность исследований.

Резюмируется, что ЦКЛ – техника в РЭМ оказывается весьма полезным и мощным инструментом для анализа микрообъектов различной физической природы. Изменения спектра (цвета) катодолюминесценции обусловлено не только изменением химического состава (в том числе и на уровне примесей), но и различными несовершенствами кристаллической структуры объектов. Поэтому композитные изображения с использованием режима ЦКЛ могут давать информацию не только о топографии поверхности объекта, но и о химическом, фазовом составах, совершенстве кристаллической структуры.

Подчеркивается также, что применимость ЦКЛ-метода ограничена природой исследуемых объектов, которые должны обладать катодолюминесценцией в видимой части спектра. Среди используемых в производстве изделий ЭТ материалов такими объектами являются изоляционные керамические материалы, материалы для поглотителей и выводов СВЧ-энергии, катодные материалы, ряд полупроводниковых соединений, люминофоры, алмазы и алмазоподобные материалы и др.

На рис. 2-11 приведены изображения, полученные при исследовании некоторых материалов ИЭТ. Они демонстрируют возможности как собственно ЦКЛ-метода в РЭМ, так и в комбинации с традиционными режимами РЭМ (ВЭ, ООЭ и др.).

Из анализа этих рисунков вытекает, что созданная комплексная методика оказывается весьма информативной при исследовании гетерофазных материалов – импрегнированных и металлокерамических катодов мощных СВЧ-приборов. Это подтверждается, в частности, рис. 6, где изображен участок поверхности излома металлокерамического катода (кермет-катода) состава

W –Y2O3 – Al2O3. Использование композитного режима ЦКЛ в данном случае дает дополнительную информацию о фазовом составе объекта, которую невозможно получить традиционными методами РЭМ, позволяет визуально осуществлять «топографический» фазовый анализ - наглядно демонстрирует наличие, размер и распределение основных фаз в образце. На фоне «черно-белой» матрицы из зерен вольфрама видны «цветные» люминесцирующие фазы: окиси иттрия (голубая), окиси алюминия (красная) и образовавшегося в результате их взаимодействия алюмоиттриевого граната (зеленая фаза).

Это же относится к рис. 7, где показаны изображения поперечного излома импрегнированного катода мощного СВЧ прибора после эксплуатации. ЦКЛ методика оказывается эффективной для визуальной оценки однородности пропитки вольфрамовой матрицы исходным эмиссионно-активным веществом - алюминатом (люминесцирующая фаза), изменения его химического и фазового состава и возникновения обедненных зон.

Следует отметить, что полезность ЦКЛ-метода определяется не только «подходящим» объектом исследования, но и правильной интерпретацией получаемых результатов. Реализованная нами возможность одновременного определения химического состава люминесцирующих областей методом РСМА позволяет рассматривать получаемые композитные ЦКЛ-изображения не только как красивые цветные картинки, но и как источник дополнительной информации о химическом и фазовом составе объекта.

Отмечено также, что получение с помощью ЦКЛ приставки видеоинформации об объектах в цифровом виде позволяет применять современное программное обеспечение для работы с изображениями и получать количественные характеристики РЭМ-исследований (возможность проведения количественного фазового анализа, определение размера, формы, ориентации фаз, построение гистограмм и т.д.). Причем эта возможность может быть также реализована и при исследовании нелюминесцирующих объектов стандартными методами РЭМ, позволяющими выявлять композиционный контраст и структуру исследуемых объектов.

В этой главе описана также возможность получения количественных характеристик регистрируемого катодолюминесцентного излучения, что является очень важным моментом в развитии метода ЦКЛ и его использовании как метода контроля качества материалов.

Для повышения эффективности и удобства анализа, полученных в результате обработки данных, были предложены два способа отображения результатов: визуализации результатов обработки на стандартном цветовом графике и в виде гистограмм доминирующей длины волны (когда представляет интерес распределения цвета люминесценции по поверхности образца).


загрузка...