Процессы и противоточные конвективно-массообменные аппараты для фазоселективной сорбции, экстрагирования и тепловой обработки в системе “тонкодисперсное твердое тело - жидкость” (07.09.2009)

Автор: Алиев Мурад Ризванович

АЛИЕВ Мурад Ризванович

ПРОЦЕССЫ И ПРОТИВОТОЧНЫЕ КОНВЕКТИВНО-МАССООБМЕННЫЕ АППАРАТЫ ДЛЯ ФАЗОСЕЛЕКТИВНОЙ

СОРБЦИИ, ЭКСТРАГИРОВАНИЯ И ТЕПЛОВОЙ ОБРАБОТКИ В СИСТЕМЕ «ТОНКОДИСПЕРСНОЕ ТВЕРДОЕ ТЕЛО – ЖИДКОСТЬ»

Специальность 05.18.12 – Процессы и аппараты пищевых производств

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Краснодар – 2009 Работа выполнена в Дагестанском научно-исследовательском институте пищевой промышленности

Официальные оппоненты: доктор технических наук, профессор Антипов Сергей Тихонович

доктор технических наук, профессор Дворецкий Станислав Иванович

доктор технических наук, профессор Данилин Серафим Владимирович

Ведущая организация: ГУ Всероссийский научно-исследовательский институт пивоваренной, безалкогольной и винодельческой промышленности РАСХН

Защита состоится 3 ноября 2009 г. на заседании диссертационного совета Д 212.100.03 при Кубанском государственном технологическом университете по адресу: 350072, г. Краснодар, ул. Московская 2.

С диссертацией можно ознакомиться в библиотеке Кубанского государственного технологического университета.

Отзыв на реферат, заверенный печатью учреждения, просим направлять по адресу: 350072, Краснодар, ул. Московская, 2, КубГТУ, Ученому секретарю.

Автореферат разослан «_____»_________________ 2009 г.

Ученый секретарь диссертационного

совета, кандидат технических наук М.В. Жарко

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В современных технологиях производства пищевых продуктов и напитков значительное место занимают процессы физической, химической, физико-химической и биологической обработок. От их эффективности зависят качество, товарный вид, конкурентоспособность и остаточные количества вредных компонентов в конечной продукции.

Процессы сорбции (адсорбционные, ионообменные), экстрагирования (десорбции) и тепловой обработки являются основой технологий обработки и стабилизации многих пищевых жидкостей, в том числе воды, сусла, соков, сиропов, вин, шампанского, коньяков, водок, пива, молока и других напитков для кондиционирования их состава, вкуса, цвета и аромата, придания им стойкости к коллоидным, кристаллическим и биологическим помутнениям, а также для повышения пищевой и экологической безопасности.

Технологические процессы в системе «твердое тело – жидкость» проводятся двумя основными способами: статическим, когда взаимодействие твердых частиц происходит одновременно со всем объемом раствора; и динамическим, который осуществляется в колонке путем фильтрования исходного раствора или экстрагента через слой сорбента или экстрагируемого материала.

Широко используемый на практике статический способ включает приготовление суспензии сорбентов (экстрагируемого материала), подачу ее в реактор, перемешивание в реакторе, длительный отстой, декантацию с осадка, фильтрацию, удаление осадка и очистку реактора. Перемешивание в реакторе проводят до достижения равновесного распределения сорбируемого (извлекаемого) компонента между жидкой и твердой фазами. При кажущейся простоте статический способ – многооперационный и малоинтенсивный. Для него характерны: малая концентрация твердой фазы объеме зоны контакта, низкая величина поверхности контакта фаз в единице объема, большое расстояние между частицами в объеме, большой внешнедиффузионный путь переноса компонента в жидкости между частицами, а также малая интенсивность и эффективность перемешивания – малый удельный объемный расход мощности на перемешивание. Все это является причиной низкой удельной объемной производительности оборудования по сорбируемому (экстрагируемому) компоненту. Следствием является громоздкость линии обработки и малоуправляемость процесса.

Положительным свойством статического способа является возможность применения сорбентов и экстрагируемого материала с малыми размерами dr частиц, следовательно, с большой удельной поверхностью. При этом внутридиффузионный путь переноса компонента в частице мал и мало характерное время внутреннего переноса. Однако, в статическом процессе затруднены операции отделения частиц сорбента (экстрагируемого материала). Время контактирования и отстаивания сорбента в емкостях достигает – до 10 суток.

Во втором, известном динамическом процессе обрабатываемая жидкость (экстрагент) фильтруется через насыпной слой сорбента (экстрагируемого материала) в колонке. Концентрация твердой фазы и поверхность контакта фаз в единице объема здесь выше и способ удобен для регенерации и повторного использования сорбента. Однако размер частиц сорбента (экстрагируемого материала) не может быть слишком мал, и невозможно использовать тонкодисперсную твердую фазу. Ограничена и является низкой скорость фильтрации жидкости через слой. Таким образом, здесь затруднен внешний конвективный перенос компонента в жидкости между частицами сорбента, а время внутреннего переносу компонента в частицах является высоким и часто лимитирует процесс. Кроме того, обязателен контроль и предварительная очистка жидкости от дисперсных частиц (гущи, дрожжей, и др.), при наличии которых быстро забивается колонка и блокируется процесс. По этим причинам динамический способ не находит при обработке пищевых жидкостей столь широкого применения как статический.

и квадрату эквивалентного диаметра частиц dr2. Поэтому указанные схемы применяются в основном для крупнодисперсных систем и систем «твердое тело – газ».

Таким образом, далеко не все способы подходят для проведения процесса в системе «тонкодисперсное твердое тело – жидкость».

Основная проблема, возникающая при использовании тонкодисперсных материалов, – это отделение их от обработанной жидкости и уплотнение. Ни один метод осветления от тонкодисперсных взвесей не дает таких высоких и неизменных результатов, как фильтрование. Необходимость этой стадии практически в любом варианте использования тонкодисперсных сорбентов (экстрагируемого материала) привела к созданию намывных фильтров, которые имеют практически все недостатки динамического способа, перечисленные выше. Для всех аппаратов типа намывного фильтра присущи трудоемкие операции сборки фильтра, намывки слоя сорбента, разборки фильтра и его очистки или замены фильтрующих элементов или мембран.

Наиболее эффективным способом интенсификации технологических процессов сорбции и экстрагирования в системах «твердое тело – жидкость» помимо тонкого диспергирования твердой фазы является обеспечение ее противоточного взаимодействия с другой сплошной фазой. Однако, оба эти условия могут достаточно эффективно выполняться только в сложных и громоздких установках многооперационного непрерывного многоступенчатого смешения – разделения фаз.

Поэтому часто на практике используется более простая одноступенчатая линия смешения – декантации фаз. Но осуществляемая в такой линии одна ступень прямоточного взаимодействие фаз дает низкую степень извлечения целевого компонента, что оказывается часто недостаточным. И это при том, что требуется почти полное последующее разделение фаз тонкодисперсной системы для уменьшения потерь компонента. А отвечающие этому условию применяемые в качестве декантаторов фильтры и центрифуги, как правило, сложны по конструкции, а отстойники – громоздки и неэффективны.

Кроме того, линии смешения-декантации, также как статический и динамический способы, принципиально не позволяют проводить фазоселективную обработку суспензий, т.е. обработку жидкой фазы без перемешивания твердой фазы суспензии с частицами сорбента. Такая обработка актуальна в ряде случаев, когда сорбент требуется сохранить в «чистом» виде для регенерации, а также, когда твердая фаза обрабатываемой суспензии блокирует процесс сорбции, а предварительное разделение суспензии либо ненужно (например, для соков с мякотью и т.п.), либо неоправданно (например, для осадков, сточных вод и т.п.).

Для тепловой обработки, в частности, для нагрева (охлаждения) таких дисперсных сред, как биосуспензии, обычно используются сложные аппараты – нагреватели с очищаемой поверхностью теплообмена. В современных технологиях, однако, целесообразна раздельная обработка фаз дисперсного потока при оптимальных для каждой из них условиях. Как известно, технологическая схема такой обработки включает минимум четыре операции: разделение фаз дисперсного потока, нагрев одной из фаз, например, сплошной жидкой фазы, транспортировка твердой фазы и смешение ее с нагретой жидкой фазой. Очевидна громоздкость и неэффективность такой схемы.

Цель исследования. Научное обоснование и разработка процессов для фазоселективной сорбции в системе «тонкодисперсный сорбент – жидкость», экстрагирования в системе «тонкодисперсный материал – экстрагент» и фазоселективной тепловой обработки гетерогенных сред, выявление закономерностей и создание оборудования для их малооперационного проведения.

Задачи исследования. Для достижения поставленной цели были решены следующие задачи:

- разработка способов фазоселективной сорбции, экстрагирования и тепловой обработки в системе “тонкодисперсное твердое тело – жидкость”;

- разработка фазоселективного процесса процессах сорбции в системе “тонкодисперсный сорбент – жидкость” в модуле и в линии «реактор - конвективно-массотеплообменный аппарат»;

- разработка фазоселективного процесса экстрагирования в линии «реактор

- конвективно-массотеплообменный аппарат»;

- разработка фазоселективных процессов тепловой обработки сплошной и дисперсной фаз суспензии в модулях «реактор - конвективно-массотеплообменный аппарат»;

- разработка противоточного конвективно-массотеплообменного аппарата в вариантах исполнения;


загрузка...