Синтез двоичных и троичных последовательностей с заданной совокупностью свойств или ограничений на их характеристики (06.07.2009)

Автор: Едемский Владимир Анатольевич

ЕДЕМСКИЙ Владимир Анатольевич

СИНТЕЗ ДВОИЧНЫХ И ТРОИЧНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ С ЗАДАННОЙ СОВОКУПНОСТЬЮ СВОЙСТВ ИЛИ

ОГРАНИЧЕНИЙ НА ИХ ХАРАКТЕРИСТИКИ

Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Великий Новгород – 2009

Работа выполнена в Новгородском государственном университете имени Ярослава Мудрого на кафедре прикладной математики и информатики.

Научный консультант: доктор технических наук, профессор

Гантмахер Владимир Ефимович

Официальные оппоненты: доктор физико-математических наук, профессор

Леухин Анатолий Николаевич

доктор физико-математических наук Панов Евгений Юрьевич

доктор физико-математических наук Золотухина Лидия Анатольевна

Ведущая организация: Институт прикладных математических исследований Карельского научного центра РАН

Защита диссертации состоится _____ __________ 2009 года в _________ на заседании диссертационного совета Д 212.168.04 при Новгородском государственном университете имени Ярослава Мудрого по адресу: 173003, г. Великий Новгород, ул. Б. С–Петербургская, д. 41, ауд. _____

С диссертацией можно ознакомиться в библиотеке Новгородского государственного университета имени Ярослава Мудрого.

Автореферат разослан " " 2009 г.

Ученый секретарь диссертационного Совета

Д 212.168.04, кандидат физико-математических

наук, доцент

Токмачев М. С.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Двоичные и троичные последовательности являются самыми широко востребованными дискретно–кодированными последовательностями, область применения которых с каждым годом расширяется. В вычислительных системах их используют в качестве псевдослучайных последовательностей для имитационного моделирования, обеспечения связи между компьютерами, тестирования, решения задач методом Монте–Карло. В телемеханических системах на основе двоичных и троичных последовательностей строят самосинхронизирующиеся коды с обнаружением и исправлением ошибок. В системах связи и передачи информации на основе двоичных и троичных последовательностей осуществляют скрытную связь с высокой криптостойкостью. В системах радиолокации, гидролокации, радионавигации их используют в качестве модулирующих последовательностей при формировании сложных шумоподобных сигналов, обеспечивая высокие потенциал и помехоустойчивость при низкой пиковой мощности передатчиков. Столь широкий спектр применений обуславливает набор требований к таким характеристикам и свойствам последовательностей, как: период, вес, уровень боковых лепестков корреляционных функций, пик–фактор, уравновешенность, эквивалентная линейная сложность и другим. Число требований к набору свойств последовательностей год от года увеличивается.

В то же время, отсутствуют регулярные методы синтеза дискретно–кодированных последовательностей с заданной совокупностью свойств или ограничений на их характеристики, несмотря на многочисленные публикации, посвященные синтезу дискретно–кодированных последовательностей с различными ограничениями на основные характеристики, такие как:

– автокорреляция – Свердлик М.Б., Ипатов В.П., Камалетдинов Б.Ж., Пелехатый М.И., Габидулин Э.М., Гантмахер В.Е., Леухин А.Н., Холл М., Кренгель Е. И., Сторер С., Динг К.,…;

– эквивалентная линейная сложность – Лидл Р., Нидеррайтер Г., Берлекэмп Э., Мешковский К.А., Ипатов В.П., Камалетдинов Б.Ж., Динг С., Мальцев С. В., …;

– взаимная корреляция (расчет и оценка) – Сидельников В.М., Мешковский К.А, Кренгель Е. И., Гантмахер В. Е., Ким Я.Х., Сонг Н.Е., …

В связи с этим задача синтеза последовательностей с заданной совокупностью свойств или ограничений на их характеристики является чрезвычайно актуальной.

В.Е. Гантмахером была предпринята попытка решить эту задачу с помощью теории спектров разности классов вычетов (СРКВ), но только для последовательностей, период которых – простое число, а набор характеристик последовательностей ограничен периодом, уровнем боковых лепестков корреляционных функций и пик – фактором [1]. На основе математического аппарата теории СРКВ были синтезированы дискретно–кодированные последовательности (ДКП), сформированные на основе классов степенных вычетов, которые обладают, по сравнению с известными последовательностями, более плотной сеткой периодов и более плотным рядом значений пик - фактора. Сравнение известных способов синтеза ДКП показывает, что синтез ДКП с использованием СРКВ является наиболее универсальным методом синтеза двоичных, троичных и бинарных последовательностей, формируемых на основе классов степенных вычетов. Но и ему, в том виде, в котором он представлен в [1], присущи серьёзные недостатки:

– при большом числе классов степенных вычетов затруднён анализ СРКВ, соответствующих периодическим автокорреляционной (ПАКФ) и взаимно корреляционной функциям (ПВКФ) дискретно–кодированных последовательностей;

– в этом методе заложена потенциальная возможность синтеза ДКП с заданной совокупностью свойств, но она не реализована;

– нет метода расчёта эквивалентной линейной сложности ДКП, сформированных по обобщенному правилу кодирования, на основе СРКВ;

– представляет интерес распространение методов синтеза ДКП с периодом р, в основе которых лежат СРКВ, на синтез ДКП с составным периодом mp.

Настоящая диссертационная работа посвящена вопросам синтеза и анализа двоичных и троичных последовательностей, сформированных на основе классов степенных вычетов по простому модулю р , с заданной совокупностью свойств. Особенность постановки задачи синтеза заключается в том, что ограничения задаются на произвольный набор перечисленных выше свойств или характеристик последовательностей. Задачи синтеза и анализа решаются на основе единого математического аппарата СРКВ и циклотомических чисел.

Цель диссертации заключается в разработке методики анализа и синтеза двоичных, троичных последовательностей, в том числе псевдослучайных, с заданной совокупностью свойств или ограничений на их характеристики, обусловленными их применением. Для достижения поставленной цели решаются следующие задачи:

- усовершенствование методики анализа и синтеза дискретно–кодированных последовательностей на основе СРКВ путём применения циклотомических чисел;

- разработка методов синтеза двоичных и троичных последовательностей с заданной совокупностью свойств или ограничений на их характеристики и синтез последовательностей с определённым набором свойств или характеристик;

- расчёт эквивалентной линейной сложности дискретно–кодированных последовательностей, сформированных на основе классов степенных вычетов;


загрузка...