Общие принципы синтеза информационно-измерительных систем физико-химического состава и свойств веществ (06.07.2009)

Автор: Бузановский Владимир Адамович

– результаты классификации задач синтеза ИИСФХ;

– математическое описание типовых задач синтеза этих систем и алгоритмы их решения.

2. Общие принципы синтеза ИИСФХ, конкретизирующие вопросы разра-ботки промышленных изделий применительно к системам названного класса.

Практическую ценность работы составляют результаты применения общих принципов синтеза ИИСФХ при разработке различных технических устройств, в том числе:

– структурные схемы, совокупности технических средств и значения режим-ных параметров систем анализа почв, обеспечивающие наименьшую стои-мость получения измерительной информации при погрешностях и произво-дительности измерений, удовлетворяющих предъявленным требованиям;

– МВИ, структурные схемы и совокупности технических средств измери-тельных систем состава и свойств природного газа, обеспечивающие наи-меньшую стоимость систем при погрешностях измерений, соответствующих предъявленным требованиям;

– МВИ, структурные схемы, технические средства, значения конструктив-ных и режимных параметров хемилюминесцентных устройств для определе-ния оксидов азота, аммиака, озона, арсина и фосфина в атмосферном возду-хе, воздухе рабочей зоны и газовых выбросах, обеспечивающие наимень-шую стоимость устройств при погрешностях измерений, удовлетворяющих предъявленным требованиям;

– МВИ, структурные схемы и совокупности технических средств рентгено-флуоресцентных химико-аналитических комплексов для определения тяже-лых металлов в природной и сточной воде, газовых выбросах и почве, обес-печивающие наименьшую стоимость комплексов;

– структурная схема и совокупность технических средств системы контроля концентрации кислорода в воздухе рабочей зоны, обеспечивающие требуе-мые погрешность, надежность и быстродействие измерений;

– схема получения измерительной информации и структурная схема уста-новки для определения азота и гелия в компонентах жидкого ракетного топ-лива, обеспечивающие получение информации непосредственно в процессе заправки образцов ракетно-космической техники.

Реализация научно-технических результатов. Опытные образцы авто-матизированных систем высокоскоростного анализа почв АСВА-П(Ц), АСВА-П(Ч), АСВА-П(М) и АСВА-П(К) введены в эксплуатацию в Центра-льном институте агрохимического обслуживания. В середине 1980-х годов потребность Государственной агрохимической службы СССР в названных системах составляла 50 штук в год. В 1986 году на головном заводе-изготовителе «Тбилприбор» начат серийный выпуск систем.

Система измерения и контроля физико-химических параметров природ-ного газа АСИК «Метан» введена в эксплуатацию в Госкомгазе Армянской ССР. Система АСК «Бентонит», являющаяся первой в СССР автоматизиро-ванной системой контроля расхода природного газа, поставлена в Произ-водственное объединение «Армгазпром». Комплекс измерения расхода природного газа АКР «Севан» внедрен в Производственном объединении «Мострансгаз».

Газоаналитические устройства для определения оксидов азота Клен-1, Клен-2, Клен-1-01, Клен-1-02, Клен-2-01, Клен-2-02, аммиака и оксида азота Клен-3, озона Клен-4, арсина Платан-1, Платан-8 и фосфина Платан-2, Платан-8-01 являются одними из первых хемилюминесцентных средств газового анализа, которые были разработаны в СССР и Российской Федерации.

Рентгенофлуоресцентные химико-аналитические комплексы ИНЛАН-РФ внедрены в специализированных инспекциях государственного экологичес-кого контроля (Курганская, Нижегородская, Челябинская, Калужская об-ласть и др.), на объектах Министерства обороны Российской Федерации (Экологический центр Минобороны России, космодром Плесецк), промыш-ленных предприятиях (АМО ЗИЛ и др.). МВИ концентраций тяжелых ме-таллов в водных средах и почве, реализуемые комплексами ИНЛАН-РФ, включены в Федеральный реестр природоохранных нормативных докумен-тов (ПНД Ф 14.1:2:4.133-98, ПНД Ф 16.1.9-98) и регламентируют порядок проведения государственного экологического контроля. Комплексы ИНЛАН-РФ являются составной частью концепции «Российские экоанали-тические технологии», которая удостоена премии Правительства Российской Федерации в области науки и техники (2000 г.).

Система 13Ш34.01, предназначенная для контроля объемной доли кисло-рода в воздухе рабочей зоны, заменила систему аналогичного назначения при модернизации станции заправки образцов ракетно-космической техники космодрома Байконур.

Установка автоматического измерения концентраций азота и гелия в компонентах жидкого ракетного топлива УК-РГ.05 разрабатывается для многоцелевой заправочной станции космодрома Плесецк.

Достоверность полученных результатов. Технико-экономические ха-рактеристики устройств, разработанных с использованием общих принципов синтеза ИИСФХ, проверены экспериментально, в том числе при проведении Государственных испытаний.

Апробация результатов исследования. Основные результаты работы обсуждались на Всесоюзных конференциях «Измерительные информацион-ные системы – 85» (г. Винница, 1985 г.), «Аналитическое приборостроение. Методы и приборы для анализа жидких сред» (г. Тбилиси, 1986 г.), «Теоре-тические основы разработки интенсивных процессов» (г. Дзержинск, 1986 г.), «Моделирование систем автоматизированного проектирования, автоматизированных систем научных исследований и гибких автоматизиро-ванных производств» (г. Тамбов, 1989 г.), международной конференции «Development & Environmental Impact Conference» (г. Эр-Рияд, 1997 г.), семинаре по проблемам реализации новых конкурентоспособных отечест-венных технологий (г. Нижний Новгород, 2002 г.), научно-практических семинарах «Экологические проблемы разработки и эксплуатации ракетно-космической техники» (г. Юбилейный, 2005-2008 г.г.) и др.

Публикация результатов исследования. Результаты работы изложены в 108 публикациях, в том числе 41 публикация – в отечественных ведущих рецензируемых научных журналах и изданиях; 4 публикации – в зарубеж-ных научных журналах и изданиях, включенных в систему цитирования Web of Science – Science Citation Index Expanded (перечень ВАК РФ).

Структура и объем диссертации. Диссертационная работа содержит введение, 4 главы, основные выводы, библиографию и приложение. Общий объем работы – 242 страницы, в том числе 85 рисунков и 36 таблиц. Библио-графия включает 291 наименование литературы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, сформулированы цель и задачи исследования, приведены основные научные и практические резуль-таты.

В первой главе установлены общие и отличительные особенности ИИСФХ, проведена их классификация; проанализированы, систематизиро-ваны и обобщены структурные схемы базовых систем.

Информационно-измерительные системы (ИИС), измерительной инфор-мацией которых является информация о физико-химическом составе ве-ществ и (или) их свойствах, образуют класс ИИСФХ. Указанные системы применяются в различных сферах человеческой деятельности, реализуют разнообразные аналитические методы, выполняют непрерывные или цикли-ческие измерения, имеют разный уровень автоматизации. При классифика-ции этих систем в качестве отличительного признака выбран объем выпол-няемых функций, и системы рассматриваемого класса разделены на три под-класса: 1) ИИСФХ первого уровня; 2) ИИСФХ второго уровня; 3) адаптив-ные ИИСФХ.

Адаптивные ИИСФХ характеризуются наличием функций получения и обработки измерительной информации, а также изменения ее объема и по-рядка получения в ходе анализа веществ.

ИИСФХ второго уровня осуществляют получение и обработку измери-тельной информации по неизменному алгоритму. Данный подкласс систем разделен на две главные группы – системы с комплексной и основной обра-боткой информации. Системы с комплексной обработкой информации реа-лизуют комбинации основных видов ее обработки – формирование и пред-ставление в виде документов заданного образца, программных продуктов, световой и (или) звуковой сигнализации.

ИИСФХ первого уровня выполняют только получение измерительной информации, вследствие чего их также называют измерительными система-ми. Системы данного подкласса разделены на две главные группы – ИИС одного и нескольких веществ. ИИС нескольких веществ представляют собой объединения ИИС одного вещества. ИИС одного вещества могут быть под-разделены на две основные группы – одно- и многоточечные системы. При этом многоточечные системы также можно разделить еще на две группы – системы с переключением и без переключения точек измерений. Если в многоточечных системах не используется переключение точек измерений, то они являются объединением одноточечных систем. При применении на-званного переключения многоточечные системы содержат одну одноточеч-ную систему или являются объединением многоточечных систем с переклю-чением меньшего числа точек измерений и (при необходимости) одной од-ноточечной системы. Одноточечные системы реализуют МВИ, объединяю-щие прямые, косвенные и совокупные измерения (группа комбинированных систем), или МВИ, основанные на одном из этих видов измерений (группа базовых систем). Кроме того, комбинированные системы можно рассматри-вать как объединения базовых систем.

Из сказанного вытекает, что получение любой измерительной информа-ции о физико-химическом составе и свойствах веществ осуществляется сис-темами, являющимися или содержащими в своем составе базовые системы – системы прямых, косвенных или совокупных измерений.

Основными функциональными частями базовых систем являются изме-рительные каналы (ИК). Системы прямых измерений представляют собой объединения простых ИК. Простой ИК может содержать последовательно соединенные подсистемы отбора пробы (ПОП), преобразования пробы (ППП), измерений (ПИ) и пересчета результата измерений (ППИ).

ПОП чаще всего реализует: 1) отбор части исследуемого вещества в его естественном (газообразном, жидком, твердом) состоянии; 2) отбор и филь-трацию части газообразного (жидкого) вещества; 3) отбор части жидкого ве-щества и добавление в нее консерванта; 4) отбор и абсорбцию (хемосорб-цию) части газообразного вещества жидким поглотителем; 5) отбор и экс-тракцию части жидкого (твердого) вещества жидким реактивом; 6) отбор и адсорбцию части газообразного (жидкого) вещества твердым поглотителем. При этом только первый способ отбора пробы не связан с изменением физи-ко-химического состава отбираемой части вещества.

ППП используется в случаях, когда: 1) измерения информативного пара-метра пробы не могут быть выполнены непосредственно средством физико-химических измерений, в том числе, если диапазон измерений этого средст-ва не соответствует значениям информативного параметра пробы; 2) по-грешность измерений информативного параметра пробы непосредственно средством физико-химических измерений не отвечает предъявленному тре-бованию из-за недостаточной чувствительности и (или) селективности дан-ного средства. Заметим, что под преобразованием пробы понимается широ-кий круг операций (химические реакции, сорбция, экстракция, разбавление и др.), осуществление которых приводит к изменению информативных и неин-формативных параметров пробы.

Главной составной частью ПИ обычно является средство физико-хими-ческих измерений, а ППИ проводит перевод результата измерений физико-химического состава пробы, полученного ПИ, в результат измерений инфор-мативного параметра исследуемого вещества.

В зависимости от функций, выполняемых в процессе прямых из-мерений, простые ИК разделены на 4 типа, один из которых включает два подтипа (табл. 1).

Системы косвенных и совокупных измере-ний являются объеди-нением сложных ИК. Сложный ИК состоит из каналов первичной информа-ции и подсистемы расчета результатов косвенных (ПКИ) или совокупных измерений. Каналами первичной информации могут быть простые ИК или «квази-измерительные» каналы. «Квази-измерительные» каналы содержат последовательно соединенные ПОП, ППП и ПИ. В соответствии с объемом функций, выполняемых при получении первичной информации, «квази-измери-тельные» каналы разделены на два типа, один из которых имеет два под-типа (табл. 2).

Наличие подтипов каналов П.4 и К.2 объясняется проведением отбора пробы без изменения или с изменением ее физико-химического состава.

На основе представленных данных разработаны обобщенные структур-ные схемы базовых систем. На рис. 1 приведена обобщенная структурная схема систем кос-венных измерений. Использованы сле-дующие обозначе-ния: XИ0, XН0 – ин-формативные и не-информативные па-раметры вещества; ХИ0l, ХИ1l, ХИ2l – параметры вещества, пробы и преобразованной пробы, информативные для l-ого канала первичной информации; ХН0l, ХН1l, ХН2l – параметры вещества, пробы и преобразованной пробы, неинформативные для l-ого канала первичной информации; ХИ0l*, XИ2l* – результаты измерений параметров ве-щества и преобразованной пробы, информативных для l-ого канала первич-ной информации; ХК0r* – результат измерений параметра вещества, информа-тивного для r-ого сложного ИК; L – число каналов первичной информации; R – число параметров вещества, определяемых на основе косвенных измере-ний (число сложных ИК).

Вторая глава посвящена разработке математического описания и ана-лизу технико-экономических характеристик базовых систем.

Математическое описание статических функций преобразования систем косвенных измерений приведено ниже

ХК0r*=?Кr(ХИ01*, …, ХИ0L*, UKr), ХИ0l*=?И1l-1(ХИ1l~, ХН0l^, G1l^),

ХИ1l~=?И2l-1(ХИ2l*, ХН1l^, G2l^), ХИ2l*=ХИ2l+?ХИ2l°, ?ХИ2l°=?Wl/Sl,


загрузка...