Синтез, оптические спектры и стереоатомный анализ структуры сложных халькогенидов, активированных фторидов и оксидов (06.04.2009)

Автор: Исаев Владислав Андреевич

Исаев Владислав Андреевич

СИНТЕЗ, ОПТИЧЕСКИЕ СПЕКТРЫ И СТЕРЕОАТОМНЫЙ АНАЛИЗ СТРУКТУРЫ СЛОЖНЫХ ХАЛЬКОГЕНИДОВ, АКТИВИРОВАННЫХ ФТОРИДОВ И ОКСИДОВ

01.04.07 – физика конденсированного состояния

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Краснодар 2009

Работа выполнена на кафедре экспериментальной физики Кубанского государственного университета.

Научный консультант

доктор физико-математических наук,

профессор А.Г. Аванесов

Официальные оппоненты:

доктор физико-математических наук,

профессор П. А. Родный

доктор физико-математических наук,

профессор А.Н. Колеров

доктор физико-математических наук,

профессор В.В. Фомин

Ведущая организация: Ставропольский государственный университет

Защита диссертации состоится 17 июня 2009 г. в 14 часов на заседании диссертационного совета Д 212.101.07 при Кубанском государственном университете по адресу: 350040, г. Краснодар, ул. Ставропольская, 149, ауд. 231.

С диссертацией можно ознакомиться в библиотеке Кубанского государственного университета по адресу: 350040, г. Краснодар, ул. Ставропольская, 149

Автореферат разослан ___ _____ 2009 г.

Ученый секретарь диссертационного совета,

доктор физико-математических наук,

профессор А.В. Смирнова

общая характеристика работы

Актуальность проблемы. Одной из фундаментальных проблем физики конденсированного состояния является целенаправленный поиск новых нелинейных и активированных кристаллов с требуемыми характеристиками, основанного на проведении комплексных исследований взаимосвязи структуры и природы химической связи в кристаллах со спецификой процессов поглощения и испускания света, определенным видом энергетической и колебательной структур примесных центров и другими физическими свойствами, которые определяют эффективность работы оптических приборов и устройств на основе кристаллов.

Большое значение для развития квантовой электроники и ее многочисленных ответвлений имеет поиск и детальное исследование новых перспективных материалов, обладающих совокупностью заданных оптических, спектрально-люминесцентных и физико-химических свойств, позволяющих, с одной стороны, значительно улучшить параметры существующих устройств, а с другой – создать элементы принципиально нового типа. Получение материалов с необходимыми свойствами требует изучения фазовых диаграмм, разработку способов синтеза и роста, исследования различных свойств, что приводит к значительным финансовым и временным затратам. Поэтому принципиальное значение приобретают работы, направленные на разработку методов прогнозирования материалов с необходимым набором свойств.

Тиогаллаты со структурами халькопирита и дефектного халькопирита относятся к тройным халькогенидам. Эти соединения обладают нелинейными, акустооптическими, сегнетоэлектрическими, полупроводниковыми свойствами. Большая ширина запрещенной зоны, высокая чувствительность к видимому и ультрафиолетовому излучению, эффекты переключения, памяти и фильтрации одних (твердые растворы на основе CdGa2S4 и AgGaS2) позволяют использовать эти материалы в полупроводниковой технике и оптоэлектронике, а сочетание таких свойств, как прозрачность в широком диапазоне видимого и инфракрасного излучения, большая величина коэффициента нелинейной восприимчивости, двулучепреломление и устойчивость к лазерному излучению для других (твердые растворы на основе HgGa2S4 и AgGaS2) привлекают внимание к этим соединениям как материалам нелинейной оптики – для генерации второй гармоники, параметрического преобразования частот, управления лазерным излучением. Сложный энергетический спектр электронов и анизотропия оптических свойств позволяют создавать на основе халькопиритных кристаллов фотодетекторы, элементы солнечных батарей, когерентные и некогерентные источники поляризованного излучения.

Широкому использованию тройных тиогаллатов в современных приборах препятствуют трудности получения их высококачественных кристаллов. Эти соединения имеют переменный химический состав со сложной формой области гомогенности в координатах Т - X. Распад твердых растворов при низких температурах дополнительно затрудняет выращивание качественных монокристаллов. Поэтому необходимы экспериментальные исследования областей устойчивости халькогенидных соединений со структурой халькопирита и дефектного халькопирита, выяснение оптимальных условий их получения. Кроме того, при разработке приборов и устройств на основе кристаллов со структурой халькопирита необходимо иметь точные сведения об оптических свойствах этих соединений. Открытым, в частности, остается вопрос о механизме трансформации оптических свойств при изменении состава твердых растворов на основе тиогаллата кадмия. Решение этих вопросов важно для прогнозирования соединений с заданной совокупностью свойств и целенаправленного изменения тех или иных параметров различных устройств.

Повышенный интерес к люминофорам и рост исследовательской деятельности в этом направление объясняется возрастающим год от года техническим значением их в различных областях науки и техники. Наиболее широкое применение в последние годы получили люминесцентные лампы дневного света, в которых осуществляется преобразование ультрафиолетового излучения от ртутного разряда в видимое излучение люминофором, нанесенным на внутреннюю поверхность стеклянной трубки. Однако в связи с тем, что в люминесцентных лампах присутствует ртуть, что делает их экологически вредными как при производстве, так и в утилизации, наметилась тенденция к замене ртути в люминесцентных лампах. Кроме того, давление паров ртути при комнатной температуре недостаточно высокое, вследствие чего устойчивое горение лампы происходит не сразу же после включения, что крайне нежелательно для ламп дневного света и делает невозможным использование ртутного разряда в панелях плазменных дисплеев. Альтернативой ртути были предложены благородные газы, в частности смесь газов неона и ксенона. Однако простая замена ртутного разряда на ксеноновый разряд невозможна, так как спектры возбуждения люминофоров, разработанных для ртутного разряда не согласуются со спектром излучения Ne-Xe-разряда, максимум полосы излучения которого приходится на 170 нм, что значительно короче длины волны ртутного разряда ( = 254 нм. Это обстоятельство выдвигает более жесткие требования к люминофорам для ламп с Ne-Xe-разрядом, так как прямое преобразование одного кванта света с длиной волны 170 нм в квант видимого излучения с ( ( 510 нм энергетически не эффективно. Энергетический выход при получении одного кванта видимого диапазона при возбуждении одним квантом вакуумного ультрафиолета очень мал (предел составляет 27%). Проведенные исследования показали, что такой эффект может быть достигнут в кристаллических средах, активированных ионами празеодима. Однако для наблюдения так называемой каскадной люминесценции, когда возбужденный в высокоэнергетическое состояние ион переходит в основное состояние, излучая два фотона видимого диапазона, необходимо, чтобы 1So – уровень Pr3+ был расположен ниже дна 5d-зоны. Так как радиальное распределение 5d-орбиталей выходит за рамки 5s26р6-оболочек, то положение 5d-уровней весьма чувствительно к кристаллическому полю, т.е. к химической природе лигандов и их координации вокруг иона Pr3+. В связи с этим особое значение приобретают научные исследования, направленные на изучение спектрально-люминесцентных и структурных свойств широкого круга неорганических материалов с целью выявления закономерностей формирования структуры энергетических уровней.

В системах оптической связи требуются эффективные источники когерентного излучения для обработки, передачи, записи информации. Твердотельные лазеры выгодно отличаются от используемых в этом же качестве светодиодов и диодных лазеров более высокой мощностью излучения, сравнительно малой шириной линии генерации, малой расходимостью выходного излучения, большим сроком службы. При использовании в качестве источника накачки лазерных диодов, спектральная яркость которых в сотни раз превышает яркость газоразрядных ламп, существенно снижаются требования к величине поперечных сечений генерационных переходов и открывается возможность использования «многоцентровых» разупорядоченных лазерных материалов, а также материалов с развитым фононным спектром, формирующих широкие контуры усиления. Предельным случаем разупорядоченной лазерной матрицы с развитым фононным спектром являются некоторые лазерные стекла, например силикатные и фосфатные стекла, активированные редкоземельными ионами, на которых реализованы лазеры высокой эффективности. Однако неудовлетворительные термооптические и теплофизические характеристики стекол накладывают жесткие ограничения на выходные характеристики лазеров на их основе, что делает актуальными работы, направленные на изготовление эрбиевых лазеров на основе кристаллов.

Поэтому для создания высокоэффективных твердотельных лазеров на 1,5 мкм необходима разработка новых лазерных кристаллов, активированных редкоземельными ионами Er3+.

Основным препятствием на пути создания эффективного полуторамикронного кристаллического эрбиевого лазера является низкая скорость заселения верхнего лазерного уровня. Скорость заселения верхнего лазерного уровня 4I13/2 определяется скоростью безызлучательного опустошения расположенного непосредственно над ним уровня 4I11/2. В хорошо зарекомендовавших себя и получивших широкое распространение лазерных матрицах, таких как кристаллические алюминаты, время жизни уровня 4I11/2 составляет величины порядка нескольких сот микросекунд. Уменьшение времени жизни надлазерного уровня может быть достигнуто путем побора матрицы с определенной протяженностью фононного спектра, а также путем введения в матрицу ионов релаксаторов, опустошающих его за счет мультипольных взаимодействий. Желаемый эффект может быть реализован специальным выбором кристаллов из семейства силикатов редкоземельных и щелочноземельных металлов. Несмотря на удовлетворительные свойства этих кристаллов, в целом они изучены недостаточно и не находят до сих пор широкого применения. Поэтому выявление связи спектрально-люминесцентных свойств и лазерных параметров кристаллов на основе соединений кремния, активированных ионами Yb3+, Er3+, Ce3+, предназначенных для активных сред твердотельных лазеров, излучающих в полуторамикронной области спектра с кристаллохимическими характеристиками лигандов, является актуальной проблемой.

Применение кристаллохимического подхода, основанного на установлении связи состав-структура-свойство, позволяет сократить путь от соединения к материалу, пригодному для изготовления оптических элементов приборов и устройств. Однако в рамках классической кристаллохимии атомы в кристаллах рассматриваются как жесткие сферы определенного радиуса. Соотношение шаров различного радиуса определяется химическим и стереохимическим составом вещества. При этом атомам одного и того же химического элемента приписывается не одно, а несколько значений кристаллохимических радиусов, соответствующих разным типам связи. Анализ распределения электронной плотности вокруг атомов показывает, что области пространства, отвечающие в структуре кристаллов отдельным атомам, напоминает многогранник. Приближением, которое позволяет установить форму этого многогранника, является метод полиэдров Вороного-Дирихле. Характеристики полиэдров Вороного-Дирихле в сочетании с методом пересекающихся сфер позволяют расширить область применения кристаллохимического подхода для выявления закономерностей состав-структура-свойство. Однако применение этих методов к областям твердых растворов и активированным кристаллам требует разработки новых подходов и методов.

Таким образом, развитие методов поиска новых материалов для квантовой электроники, позволяющих сократить время и затраты на исследования, является одной из актуальных проблем физики конденсированного состояния.

Цель диссертационной работы состояла в определении условий синтеза широкого круга кристаллических сред и в исследовании связи спектральных свойств выращенных кристаллов на основе сложных халькогенидов, празеодим содержащих сложных оксидов и фторидов, силикатов редких земель со структурными особенностями и природой химической связи в них и разработке методов поиска новых нелинейных и активированных кристаллов с заданными свойствами.

Поставленная цель требует решения следующих основных задач:

- поиск и получение методом Бриджмена-Стокбаргера и его модификациями новых монокристаллов твердых растворов на основе тиогаллатов кадмия и ртути, методом Чохральского новых активированных ионами Yb3+, Er3+, Ce3+ монокристаллов силикатов редких земель, методом твердофазного синтеза празеодим содержащих сложных оксидов и фторидов, что требует изучения фазовых диаграмм состояния, особенностей синтеза и кристаллизации, рентгенофазовых и рентгеноструктурных исследований;

- комплексное исследование спектров пропускания, люминесценции, кинетик затухания люминесценции синтезированных материалов;


загрузка...