Формирование гидрологического режима водосборов малых равнинных рек (05.10.2009)

Автор: Ясинский Сергей Владимирович

Комплекс гидролого-эрозионных процессов, формирующихся на водосборах, относится к неточечным источникам загрязнения водных объектов. Они обусловливает миграцию и вынос в речную сеть малых равнинных рек не только органического вещества (ОВ) и биогенных элементов (БЭ), но и ядохимикатов, тяжелых металлов и радионуклидов. Потоки разнообразных веществ, выносимых с водосбора, трансформируются овражно-балочной сетью и, поступая в водные объекты, приводят не только к ускоренной эвтрофикации, но и совместно с притоком из точечных источников обусловливают общее загрязнение рек и водоемов. Совокупность процессов поступления и трансформации химических веществ с водосбора из неточечных источников в системе «водосбор – водный объект» характеризуется как диффузное (рассеянное) загрязнение водных ресурсов.

В работе выполнен анализ современных подходов к оценке характеристик диффузного загрязнения водных объектов, отмечены достоинства и недостатки таких методов их расчета, как «коэффициентов выноса» [Н.И. Хрисанов, Г.К. Осипов,1993; А.А. Цхай, 1995], физико-статистического [Г.А. Чуян и др., 1985; Г.Г. Борисова, 2003], математического моделирования [Н.А. Назаров, 1996; С.А. Кондратьев, 1990, В.Г. Пряжинская, 2001]. На основе такого анализа дано обоснование необходимости разработки новых, более простых методов, обеспечивающих, вместе с тем, достаточную для практики точность расчета как частных гидролого-геохимических процессов, так и общего диффузного загрязнения водных объектов.

В работе разработан ландшафтно – гидрологический метод (ЛГМ) оценки среднего многолетнего объема выноса основных БЭ – азота и фосфора с малого речного водосбора в период весеннего снеготаяния и получены оценки вклада диффузного поступления этих БЭ в формирование биогенного загрязнения его реки, основанный на гидролого – географическом подходе [В.Г. Глушков, 1961; М.И. Львович, 1963; А.И.Субботин,1966].

Основу ЛГМ составляют выражения, разработанные в физико-статистическом методе [Г.А. Чуян и др., 1985]. Согласно ему, оценка выноса биогенных веществ с жидким стоком (Вж) производится по формуле:

Вж = 10 – 3 C Wp Fр (4),

где: Вж - вынос биогенного вещества в кг; C - концентрация БЭ в стоке, мг/л; Wp- объем стока заданной вероятностью превышения, м3/ га; Fр - площадь,, га.

Расчет выноса БЭ с твердым стоком (Вт) производится аналогично:

Вт = 10 - 3 m Mp Fр (5),

где: m - содержание биогенного вещества в твердом стоке, мг/кг наносов, определяется по их концентрациям в верхнем 10см слое почвы; Mp - модуль твердого стока за период весеннего половодья заданной вероятности превышения, т/га. Общий вынос БЭ с водосбора рассчитывается как сумма их потоков с жидким и твердым стоком: Вс = Вж + Вт.

Объектами, на примере которых проводилось разработка ЛГМ оценки выноса БЭ, являлись водосбор р. Истры и 16 малых речных бассейнов, образующих его гидрографическую сеть. Разработка ландшафтно – гидрологического метода (ЛГМ) оценки объема выноса БЭ проводилась для периода весеннего снеготаяния, в течение которого на большей части южной части лесной зоны Русской равнины, формируется 60 – 80% весеннего и 40-60% годового стока малых рек [Н.И.Коронкевич, 1990; В.А. Жук, Н.Л. Фролова, 1993].

6.1 Методика расчета средних многолетних характеристик гидролого – эрозионных процессов, формирующихся на водосборе и выноса БЭ в овражно – балочную и речную сеть

Расчет средних многолетних характеристик процессов выноса БЭ в ОБС и речную сеть малых водосборов и всего бассейна р. Истры производится в следующей последовательности.

а. Оценка площади геосистем.

По картам М 1: 100000 выделяются границы и гидрографическая сеть малых водосборов и для каждого из них определяются площади лесных, сельскохозяйственных (зябь и уплотненная почва), урбанизированных геосистем и площадь ОБС.

б. Расчет ПВСС.

Для каждого типа геосистем всех водосборов проводится расчет ПВСС по зависимостям Увс = f (Урс), аппроксимированных выражениями (1-3), приведенными в главе 1.

Средний многолетний речной сток в период весеннего половодья рассчитывается по величине среднего многолетнего годового стока с коэффициентом 0.5 [Г.С.Шилькрот, С.В.Ясинский, 2002]:

Урс = 0.5 Yр (6),

Средний многолетний годовой речной сток оценивался по зависимости от средней высоты водосбора Yр = f (Hср) [Оценка ресурсов…,1989]:

Yр = 1,99*Hср -219 (7),

где Yр - величина среднего многолетнего годового речного стока, мм; Нср - средняя высота водосбора, м.

Величина ПВСС для урбанизированных геосистем определялась приближенно, как пропорция между ПВСС в агрогеосистемах и коэффициентами стока с урбанизированных (?урб = 0.75) и сельскохозяйственных геосистем (?cх= 0.58) d= ?урб /?cх. [Г.М. Черногаева,1976; А.И. Субботин, В.С. Дыгало, 1991].

Оценки ПВСС в ОБС получены по величине снегозапасов, сложенных с осадками за период снеготаяния в этом типе ландшафта (Sобс мм) и его коэффициенту(?):

Yобс = Sобс ?

Sобс = а Sп (8),

где: а – переходной коэффициент, между значениями снегозапасов + осадки за период снеготаяния в поле (Sп) и в ОБС (Sобс): а = 1.5 [Н.И. Коронкевич, 1990]; ? - коэффициент ПВСС в ОБС: ? = 0.9 [А.И. Субботин, В.С. Дыгало, 1991]. Величина снегозапасов + осадки в поле (Sп) рассчитывается по зависимости от величины среднего многолетнего речного стока (Yр): Sп =f (Yр) [Н.И. Коронкевич, 1990], аппроксимированной следующим уравнением:

Sп = 1.33 Yр – 82.2 (9).

в. Расчет эрозии почвы.

Для каждого типа агросистем всех водосборов производится расчет эрозии почвы по зависимости смыва распаханной под зябь почвы (М, т/га) от слоя ПВСС (Yвс,мм): М = аYвс n, где - а, n - эмпирические параметры [Н.Н.Бобровицкая, 1977]. Значения входящих в зависимость М=f(Yвс) параметров для зяби на дерново – подзолистых почвах были определены следующими: а =10-1 0,42; n = 1.3:

Мз = 10-1 0,42 Yвс1.3 (10)

Для агрогеосистем с уплотненной почвой использовался коэффициент Кз = 0.15, учитывающий почвозащитные свойства растительного покрова по отношению к зяби [Н.И.Хрисанов, Г.К.Осипов, 1993]:

Муп =0.15 Мз = 10-2 0,63 Yвс1,3 (11).

При расчетах эрозии почвы с урбанизированных геосистем использовалось среднее значение мутности талых вод ?=2.5 г/дм3, полученное как среднее для различных функциональных зон этих геосистем [Вода России. Малые реки, 2001]:

Мурб.= ? Wвсу. (12),

где Wвсу – объем ПВСС.

г. Оценка концентраций БЭ в жидком и твердом стоке.

В работе были использованы средние многолетние значения концентрации в ПВСС БЭ, полученные для естественных (лесных) и природно-антропогенных агрогеосистем южной части лесной зоны Русской равнины. Было принято, что среднемноголетняя концентрация подвижных форм Nобщ. для лесных геосистем составляет 2.20 мг/ дм3, Робщ – 0.06 мг/ дм3; для агрогеосистем с уплотненной почвой: Nобщ -1.72 мг/ дм3, Робщ – 0.11 мг/ дм3; с зябью: Nобщ – 2.99 мг/ дм3, Робщ. – 0.165 мг/ дм3 [М.А. Хрусталева, 1990]. Для урбанизированных территорий использованы аналогичные данные, полученные для г. Валдая, расположенного в той же природной зоне: Nобщ – 3.5 мг/ дм3, Робщ. – 0.104 мг/ дм3 [Г.С. Шилькрот, 1979].

Оценка содержания в почвах подвижного Р-Р205 проведена двумя путями: 1 - по результатам статистического анализа данных, полученных из агрохимических картограмм за 1990-1994 гг. для 13 коллективных сельскохозяйственных предприятий, охватывающих более 900 сельскохозяйственных полей; 2 - по данным агрохимических анализов смешанных образцов почвы агрогеосистем всех малых водосборов бассейна р.Истры. Анализ данных агрохимических картограмм показал, что содержание Р-Р205 для 4% рассмотренных полей находилось в пределах 51-100мг/кг; для 11% - 101-150 мг/кг; для 28% - 151-250 мг/кг; для 57% > 250 мг/кг. Согласно классификации, принятой Агрохимслужбой для оценки плодородия почв дерново-подзолистые почвы, с содержанием Р-Р205 > 250 мг/кг относятся к категории – «очень высокой обеспеченности» [В.И.Никитишен, 2003]. Агрохимический анализ образцов почвы, отобранных в осенние и весенние периоды в 1995-96гг, показал, что содержание Р-Р205 менялось в диапазоне 120 -330 мг/кг. Валовое содержание Р в почве, агрогеосистем малых водосборов принято равным: Рвал.- 600 мг/кг [К.Е. Гинзбург, 1981]. Валовое содержание N для агрогеосистем была оценено по материалам многолетнего стационарного опыта в исследуемом бассейне и принято равным: Nвал – 1100 мг/кг [А.К.Ярцева и др,1974]. Значения подвижного Nпод. для всех видов агрогеосистем были приняты равными 0.1 от Nвал. [Г.А.Чуян и др., 1985]. Содержание БЭ в почвах урбанизированных геосистем в бассейне р.Истры получено по данным агрохимического анализа 4 смешанных проб, отобранных в 2004г в различных функциональных зонах г.Истры. Содержание в почве разных функциональных зон г. Истры N - Nвал менялось в диапазоне 1400 – 1970 мг/кг, Р - Рвал. – 362-767 мг/кг; Рпод-Р205 – 75 – 185 мг/кг. В расчетах выноса БЭ с этих геосистем для всех водосборов использовались их средневзвешенные значения, полученные с учетом площади той или иной функциональной зоны г. Истры.

д. Трансформация потока БЭ овражно-балочной сетью.

В связи с тем, что коэффициент стока талых вод в целом для ОБС равен: ?=0.9 [А.И. Субботин, В.С. Дыгало, 1991] в качестве характеристики ПВСС, поступающего в речную сеть принята средневзвешенная оценка его значений для всего водосбора.


загрузка...