Источники когерентного инфракрасного излучения для спектроскопии высокого разрешения (05.10.2009)

Автор: Колкер Дмитрий Борисович

Рис 4. Самосинхронизация фазы: провал интенсивности и уширение собственной моды резонатора

Рис 5. Анализ двух режимов при помощи конфокального интерферометра Фабри-Перо

Рис 6. Анализ двух режимов работы ПГС-ССФ (многомодового и 3:1) при помощи короткого Фабри-Перо : FSR = 150 GHz, F = 4000. а) Мультикаскадгый режим ,

б) Режим деления частоты на 3

Такие комплексные системы открывают возможность для создания ПГС с синхронизацией мод в широком диапазоне спектра (в диапазоне прозрачности PPLN и PPKTP) c пассивным механизмом синхронизации мод. На выходе ПГС с синхронизацией мод обнаруживаются последовательности импульсов с частотой следования равной FSR резонатора ПГС при условии, что относительная фаза между близлежащими модами зафиксирована, и дисперсия групповой скорости скомпенсирована.

В шестой главе представлены экспериментальные результаты исследования двухрезонаторного параметрического осциллятора с самосинхронизацией фазы с накачкой второй гармоникой Nd:YAG лазера в области 532 нм.

Для создания двухрезонаторного ПГС-ССФ была выбрана нетрадиционная конфигурация, в которой величина периода в ГВГ секции не является постоянной. При дизайне нелинейного элемента с составной конфигурацией необходимо быть уверенным в том, что два процесса фазового синхронизма хорошо согласованы при одинаковой температуре. Однако сложно предусмотреть, каким образом можно согласовать размеры периодов ПГС и ГВГ секций, исходя из эмпирических уравнений Солмейера. При изготовлении структуры невозможно избежать технологической ошибки, которая может составлять 0.05 A для каждого периода PPLN структуры.

Методика, которая использовалась при дизайне нелинейного элемента, заключается в том, что данная секция PPLN кристалла имела постоянно изменяющуюся величину ГВГ-периода. Достоинством данной методики является возможность постоянной перестройки условий фазового синхронизма в ГВГ-секции при перемещении кристалла вдоль оси Y (рис 7). При фиксированной величине периода ПГС-секции ?1=7.2 мкм, условия фазового синхронизма для ПГС-секции могут достигаться при 170(С с ожидаемой температурной полосой в 1.5(С. ГВГ-период варьируется вдоль оси Y от ?2=19.45 мкм до 19.85 мкм. Изменение Y-позиции кристалла позволяет эффективно изменять величину периода в разветвленной конфигурации. Это является преимуществом по сравнению с мультитрековым методом , описанным в пятой главе при дизайне трехрезонаторного ПГС-ССФ. Изменение величины периода в разветвленной ГВГ-секции выбрано таким образом, чтобы обеспечить условия фазового синхронизма при изменении температуры в 40(С при условии, что позиция кристалла может измениться от середины до одного из краев.

Одним из достоинств разработанной системы ПГС является выбранная конструкция резонатора. Стоит отметить, что после настройки, данная конструкция не нуждалась в юстировке в течение полутора лет. При конструировании механических элементов резонатора необходимо учитывать влияние вибраций, температурных градиентов, а также воздушных конвекционных потоков, которые имели место в данной системе, поскольку рабочая температура кристалла лежала в области 170-205 (С.

Рис 7. Схема экспериментальной установки двухрезонаторного ПГС-ССФ. PZT – пьезоэлемент, BP – фильтр, пропускающий частоту накачки; LP1, LP2 – фильтры, пропускающие частоту холостой и сигнальной волны соответственно.

Поиск режима деления частоты на 3 происходил следующим образом: на первом этапе работы мы изменяли температуру кристалла пошагово с интервалом в 0.1oC в диапазоне от 200 до 207oС при фиксированной мощности накачки 100 мВт. На втором этапе работ на каждом шаге, после стабилизации температуры кристалла, мы включали активную стабилизацию частоты ПГС. В захваченном состоянии измерялясь частота волны накачки и сигнальная частота при помощи ?-метра с точностью до 100 МГц . При температуре измерения 203.6(С соотношение частот с точностью лямбдометра оказалось равным 3:2:1. При фиксированной температуре и мощности наачки на следующем этапе мы проводили сканирование Y-позиции в кристалле. В одном из положений, которое было немедленно зафиксировано и откалибровано по лимбу, наблюдалось уширение моды резонатора на сигнальной и холостой частотах. На рис 8 представлена запись кластеров ПГС для накачки, сигнальной и холостой волн (сверху вниз). При других температурах кристалла и Y-позициях никогда ранее подобного поведения не наблюдалось.

Рис. 8. Уширение моды резонатора сигнальной и холостой волны.

При более тщательной юстировке кристалла по всем координатам и по позиции кристалла относительно перетяжки пучка накачки в резонаторе и увеличении мощности накачки до N = 10 мы получили картину, которая уже наблюдалась ранее в другой системе (с накачкой MOPA области 842 нм).

Действительно, провал интенсивности, идентичный [48], возникал при превышении мощности накачки над пороговой в 10 раз (рис 9). В этом случае мы не наблюдали никакого насыщения выходной мощности сигнальной волны в отличие от каскадного режима. Поведение кластеров, как на сигнальной, так и холостой частотах было идентичным. Диапазон самозахвата фазы линейно увеличивался при увеличении мощности накачки. При N>20 система дестабилизировалась, и мы экспериментально наблюдали Hopf-осцилляции (рис 10).

Рис 9. Режим самосинхронизации фазы в двухрезонаторном ПГС. Наблюдается провал интенсивности и уширение моды резонатора .

Рис10. Хопф– осцилляции в ССФ-ПГС при N = 20.

Рис 11 . Максимальное уширение моды резонатора при увеличении мощности накачки. Хопф-осцилляции при N=30.

Рис.12. Внутрирезонаторные биения на выходе ПГС-ССФ в области 80-110 МГц.

При дальнейшем увеличении мощности накачки до N=30 наблюдалось максимальное уширение центральной моды резонатора, при этом Хопф-сцилляции наблюдались во всем диапазоне предполагаемого фазового самозахвата, что подтверждает факт полной дестабилизации системы (рис 11).

Внутрирезонаторные биения на частоте от 80 до 110 МГц были получены на pin фотодиоде между удвоенной холостой и сигнальной частотой прямо на выходе резонатора ПГС при мощности накачки 700 мВт. Биения наблюдались как на анализаторе спектра, так и на осциллографе. На рис 12 биения видны в виде острых пиков на сигнальном треке.

В заключении приведены основные результаты диссертационной работы.

В приложении:

Представлены акты внедрения результатов диссертации, а также документы подтверждающие вклад соискателя при выполнении экспериментов от зарубежных лабораторий.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

Исследования параметрического осциллятора с самосинхронизацией фазы в трехрезонаторной конфигурации с помощью эталонов Фабри – Перо в качестве частотных и фазовых дискриминаторов показали два режима работы ПГС-ССФ:

В одночастотном режиме при делении частоты на 3.

В многочастотном режиме работы с возможностью генерации боковых частот.

При наличии оптики с компенсацией дисперсии возможно получение пассивной синхронизации мод в SPL-OPO в ближнем и среднем ИК-диапазоне. При этом режим будет наблюдаться при отстройке частоты ПГС от точки деления на три на интервал, кратный межмодовому интервалу резонатора ПГС.

Признаки самосинхронизации фазы в режиме деления частоты на 3 и в многочастотном режиме, описанные выше не отличаются. В том и в другом режиме работы наблюдается провал интенсивности при сканировании резонатора ПГС и уширение собственной моды резонатора. При увеличении интенсивности накачки наблюдаются низкочастотные осцилляции, которые дестабилизируют работу ПГС-ССФ. В режиме деления на три спектры пропускания эталонов показывают одночастотный режим генерации ПГС, при отстройке частоты от режима деления на три на интервал кратный межмодовому интервалу ПГС наблюдался многочастотный режим генерации.

Пятичастотный режим генерации (наличие вторичного ПГС) открывает возможности для создания непрерывных оптических параметрических осцилляторов с любыми комбинациями частот, которые могут быть заданы величиной периода ???и ?2?соответствующей секции в периодически поляризованной структуре из ниобата лития или KTP. При этом специальная разветвленная конфигурация в структуре нелинейного элемента позволяет перестраивать вторичный ПГС в широком диапазоне, достигающем нескольких сотен нанометров. Частоты первичного ПГС не изменяются, поскольку величина периода в ПГС секции не зависит от координаты Y.

Разработана компактная эффективно перестраиваемая каскадная ПГС система, которая позволяет независимо от первичного ПГС контролировать фазовый синхронизм для вторичного параметрического осциллятора. Уникальными характеристиками системы являются следующие параметры: насыщение сигнала на первичной сигнальной частоте, линейная зависимость выходной мощности от мощности накачки ПГС, перестройка по длине волны в широком (200 нм) диапазоне. Самосинхронизации фазы сигнальной и холостой волн в двухрезонаторном оптическом параметрическом осцилляторе наблюдается, когда отношение частот накачки, сигнальной и холостой волн находятся в соотношении ?p :?s:?i = 3 : 2 : 1 . При этом пятичастотный режим осцилляций вырожден.

Наличие провала интенсивности при наблюдении кластеров сигнальной и холостой волн при сканировании резонатора ПГС-ССФ вблизи точки делении на 3 облегчает диагностику эффекта фазового самозахвата. Уширение собственной моды резонатора ПГС приведет к выгодному увеличению полосы пропускания для системы фазовой привязки.

Исследование квантовых аспектов прецизионных делителей частот дают основания для использования ПГС-ССФ в квантово-информационных технологиях, например, таких как, яркий источник запутанных состояний света. ПГС с самосинхронизацией фазы в комбинации с фемтосекундным лазером могут быть применены для абсолютного измерения оптических частот в широком диапазоне спектра от УФ- до среднего ИК-диапазона. ПГС-ССФ могут быть использованы для создания фемтосекундных оптических часов нового поколения.

Замена лазера накачки Verdi на Nd:YAG/I2 стандарт частоты позволит использовать ПГС-ССФ в качестве автономного мультиоктавного синтезатора оптических частот.

СПИСОК РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

. Синхронизация частоты излучения диодных лазеров с частотой мод высокостабильного фемтосекундного титан-сапфирового лазера, Квантовая Электроника, 2001, Том 31, № 5, с. 383-386.

2. S.N. Bagayev, A.K. Dmitriyev, A.S. Dychkov, S.V. Chepurov, V.M. Klementyev, D.B. Kolker, Yu.A. Matyugin, M.V. Okhapkin, S.A.Kuznetsov, V.S. Pivtsov, M.N. Skvortsov, V.F. Zakharyash, T.A. Birks, W.J. Wadsworth, P.St.J. Russell, A.M. Zheltikov «Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock» Laser Physics, vol. 11, № 12, 2001, pp. 1270 – 1282

лазеру. Оптические часы]

. Экспериментальные исследования влияния оптического волокна с перетяжкой на стабильность межмодовой частоты высокостабильных фемтосекундных импульсов

Квантовая Электроника, 2002, Том 32, № 7, с. 639-640.


загрузка...