Лекарственный фотофорез в восстановительном лечении больных хроническим генерализованным пародонтитом (02.11.2009)

Автор: Прикулс Владислав Францевич

При обследовании больных, лечение которых включало мезофотофорез, использовали дополнительный этап исследования (после второй процедуры и через месяц после окончания курса лечения).

Методики лечения

Перед началом лечения пациентам проводили стандартное пародонтологическое лечение: удаление наддесневых и поддесневых зубных отложений, затем закрытый кюретаж (открытый кюретаж использовали по необходимости) и устранение всех травмирующих факторов (некачественные пломбы, восстановление контактных пунктов, коррекция ортопедических конструкций и дефектов протезирования, устранение травматической окклюзии, восстановление жевательной эффективности).

Лазерная терапия. Проводят воздействие лазерным излучением в инфракрасном диапазоне с суммарной выходной мощностью 10-15мВт с частотой 1,5-4,0 кГц в импульсном режиме на слизистую оболочку альвеолярного отростка верхней и нижней челюстей по 2 минуты на поле (6 полей). При средней степени тяжести пародонтита курс лечения составил 8 процедур, при тяжелой степени – 10 процедур, проводимых ежедневно, при максимальном суммарном времени на один сеанс до 16 минут. Доза облучения на одну процедуру 6,2-6,8 Дж.

Локальные методики лекарственного фотофореза.

Используемые фармпрепараты: метрогил дента, троксевазин, холисал, пантоник, мильгамма или витагамма (растворяли в медиагеле в соотношении 1:1), гель солкосерил, гель актовегин, элькар (л-карнитин) (растворяли в медиагеле в соотношении 1:1), контрактубекс.

Методика проведения: предварительно наносят гель на вестибулярную и оральную поверхность альвеолярного отростка. Затем проводят лазерное облучение аналогично методике лазерной терапии.

Расширенные методики лекарственного фотофореза..

Используемые фармпрепараты: метрогил дента.

Методика проведения: дополнительно к локальному фотофорезу облучают с частотой 1кГц точки выхода 2 и 3 веточек и проекции ствола тройничного нерва по тридцать секунд. Максимальное суммарное время на одну процедуру составляло 19 минут.

Мезофотофорез.

Используемые фармпрепараты: мильгамма, витагамма, актовегин, солкосерил, троксерутин, милдронат

Методика проведения: предварительно в ткани пародонта инъекционно вводили 0,3-0,5мл раствора препарата в одну из областей поражения в точках проведения проводниковых анестезий, затем проводили фотофорез локально при соблюдении параметров методики лазерной терапии, начиная с поля инъекции, курс 5-8 процедур ежедневно при суммарном времени на один сеанс – 16 минут.

Результаты исследований

При определении стабильности фармпрепаратов методом тонкослойной хроматографии на пластинках с флуоресцентным силикагелем фирм «Merck» и «Silufоil», по проявлению в ультрафиолетовом свете при 254 нм не было установлено нарушений данных фармстатьи под действием лазерного излучения в красном и инфракрасном диапазонах и выходной мощностью до 50 мВт при 30 минутной экспозиции (совместное исследование с ст.н.с. лаборатории молекулярной биохимии НЦПЗ РАМН к.х.н. Безруковым М.В.). В результате изучения степени проникновения гелей аппликационно (10 минут) и под воздействием облучения лазером в инфракрасном диапазоне при выходной мощности 50 мВт на полупроницаемых мембранах выявлено, что при 2-ух минутах облучения процент проникновения препаратов через полупроницаемую мембрану превышает аналогичный при аппликациях, в среднем, – на 24.8% (p<0,05). Это позволило нам говорить о стойкости к разложению и возможности применения гелей для дальнейшего изучения.

Вторым аспектом оценки изменения характеристик препаратов при облучении лазером, было совместное с заведующим лабораторией оптико-физических измерений ОИВТ РАН к.т.н. Сковородько С.Н., изучение изменения спектральных коэффициентов пропускания препаратов и их составляющих, при облучении лазерным лучом инфракрасного диапазона в импульсном режиме и длине волны в диапазоне 0,2 – 2,5 мкм. Спектральные характеристики изучали с использованием двухлучевого автоматизированного спектрофотометра MPS-2000(«Шимадзу»). Установлено, что максимально лазерное излучение проходит через гель, а сам порошок лекарственной субстанции практически не пропускает лазерное излучение. Концентрация указанных порошков вносит свой акцент в пропускание излучения. Коэффициенты пропускания препаратов и их составляющих преимущественно носят стабильный характер и не изменяются под воздействием лазерного облучения.

Далее, в эксперименте была изучена зависимость коэффициента поглощения от величины мощности падающего на препарат лазерного излучения в диапазоне мощностей от 5 до 50 мВт в красном и в инфракрасном диапазонах в импульсном режиме. Выявлено, что при пропускании лазерного луча через стандартный слой раствора препарата или гелевой формы раствора препарата (при растворении препарата в электропроводном геле «медиагель» при фотофорезе) в 1 см все характеристики линейны, не имеют отклонений и пропускная способность четко зависит от мощности падающего излучения и концентрации лекарственного вещества. Отмечено отсутствие достоверных отличий в степени прохождения лазерного луча через раствор препарата и его гелевую форму в соотношении 1:1 (толщина 0,2 см) и 2:1 (толщина 0,5 см).

В следующем разделе экспериментального обоснования лазерного фотофореза предприняты исследования спектров пропускания комплекса препаратов с целью разработки рекомендаций по использованию наиболее оптимальных спектральных диапазонов для стимуляции их фармакологического действия. Кроме этого необходимо было показать, что указанные лекарственные препараты, с одной стороны, достаточно хорошо пропускают низкоинтенсивный свет оптического диапазона, что обеспечивает его непосредственное саногенетическое воздействие на ткани пародонта. С другой стороны, это излучение оптического диапазона в некоторой степени поглощается лечебным препаратом, возбуждает его молекулы, усиливает фотоиндуцируемую диффузию и транспорт через мембраны в ткани, что активизирует его фармакологическое действие и саногенетический эффект в целом.

В результате эксперимента по определению коэффициента пропускания образцов препаратов в спектральном диапазоне 200 - 900 нм выявлена следующая динамика, представленная на рисунках 1-2.

Рис.1 а). холисал б). актовегин

Как следует из рис. 1, холисал усиливает пропускаемое излучение за счёт люминесценции в УФ-диапазоне. У актовегина нет ярко выраженного края поглощения - пропускание постепенно спадает в диапазоне 420 - 280 нм. Край поглощения для гелей метрогил дента и солкосерила - при 300 нм (рис. 2);

Таким образом, пропускание в диапазоне 400 - 900 нм для всех мазей находится на уровне 80-90% и спектры препаратов похожи.

в). метрогил дента г). солкосерил

У фармпрепарата мильгаммы спектр поглощения существенно отличается от предыдущих: отличное от нуля пропускание появляется при длине волны зондирующего излучения больше 580 нм. Край поглощения для геля троксевазина локализуется в районе 400 - 440 нм.

д). троксевазин е). мильгамма (витагамма)

На рис. 2 представлены экспериментальные данные о коэффициентах пропускания препаратов в спектральном диапазоне 0.9 - 2.5 мкм (900 - 2500 нм). Интерес к этому диапазону не случаен, т.к. он представляет собой интервал ИК-спектра солнечного излучения, которое может быть использовано в качестве конкурентного по отношению к лазерному излучения для улучшения всасывания лекарственных веществ.

а). б).

Рис. 2 Исследования в спектральном диапазоне 900-2500 нм

а). 1 – кварцевая пустая ампула; 2 – медиагель; 3 – троксевазин; 4 – элькар (л-карнитин);

б). 1 –милдронат; 2 –пантоник; 3 – контрактубекс

Выявлено, что спектры пропускания всех исследованных препаратов имеют две характерные полосы - 1450-1460 нм (холисал - 70%, актовегин, метрогил дента -43%, солкосерил - 30%, троксевазин - 26%) и 1915-1935 нм (холисал - 32%, актовегин - 7%, метрогил дента - 4%, солкосерил, троксевазин - 20%).

Следовательно, полученные результаты позволяют использовать для активации фармакологических средств не только когерентное лазерное излучение, но и концентрированные потоки некогерентного или солнечного излучения. Кроме того, для препаратов, имеющих аналогичные спектральные характеристики, могут анализироваться возможности их использования для фотофореза.

Представленное экспериментальное исследование позволяет считать, что низкоинтенсивное излучение оптического диапазона, ближней и средней инфракрасной области достаточно хорошо проходит через слои исследованных лекарственных препаратов и частично поглощается ими.

В связи с этим становится очевидной необходимость объективного (прямого, количественного) подтверждения увеличения проникновения исследуемых лекарственных препаратов в ткани слизистой оболочки десны другими методами.

Проведено математическое моделирование явления фотоиндуцированной диффузии используемых лекарственных препаратов, нанесенных на поверхность ткани десны (совместно с сотрудниками Института общей физики (ИОФ) РАН, д.м.н., профессором Кузьминым Г.П. и к.ф-м н. Васильевым Е.Н.

В теоретическом плане, можно полагать, что скорость диффузии веществ (Vg) с поверхности ткани десны в ее подлежащие структуры в общем случае зависит от структурно-функциональных параметров самой ткани десны и используемых лекарственных препаратов. Эту зависимость можно охарактеризовать следующей формулой:

Vg = SUT (P/?) (n1-n2) (1)

где S-эффективная площадь поглощающей поверхности десны, U- подвижность молекул веществ (обусловлено наличием колебательной энергии и геометрии молекул), T- температура, P – обратная высота барьера проникновения веществ через ткань, ? – вязкость вспомогательной среды, n1- концентрация веществ на поверхности десны, n2 – концентрация лекарственного препарата в ткани.

Величина P=1/(u1-u2), где u1 – потенциал молекул внутри десны и u2 – потенциал молекул снаружи десны, что в итоге и определяет проницаемость мембран для апплицируемого препарата.

Молекулам препарата требуется дополнительная энергия для преодоления потенциального барьера, существующего на границе десна – внешнее пространство, чтобы проникнуть в десну из-за низкой проницаемости мембран тканей. При лазерном облучении поверхности ткани десны в области нанесения фармпрепарата, параметры S и U должны изменять свои значения, так как зависят от I-интенсивности излучения лазера на поверхности десны: Vg=Vg(I), U=U (I), S=S (I).


загрузка...