Геологические условия накопления углеводородного сырья с токсическими свойствами компонентов (02.08.2010)

Автор: Якуцени Сергей Павлович

Глава 2. СОСТАВ, СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ УГЛЕВОДОРОДНОГО СЫРЬЯ. Состав, свойства и биологическая активность углеводородного сырья. Его характеристика приведена в самом кратком виде, ориентируясь, в основном, лишь на те параметры, которые представляют наибольший интерес для разрабатываемой тематики, а именно: состав и свойства УВ, а также компонентов-примесей, в том числе токсичных, которые и анализируются в данной работе.

В современном нефтегазодобывающем секторе очевидна тенденция снижения добычи легкой и средней плотности нефти. Причём нефти «удобные» для добычи отрабатываются ускоренными темпами. Выработанность запасов разрабатываемых нефтегазовых залежей в России достигла почти 60% - при этом добыча ведётся «сверхинтенсивными» методами. Новые месторождения лёгкой и средней по плотности нефти, открыты, как правило, на северных территориях, либо в сложных коллекторах.

Тяжёлая нефть занимают особое место, отличаясь как по свойствам, так и по составу. В ней часто преобладают смоло-асфальтеновые соединения с тяжёлой молекулярной массой, состоящие из сложных полициклических молекулярных систем, часто обогащенных ПТЭ.

Мировые геологические запасы тяжелой нефти составляют более 810 млрд. т. Геологические запасы высоковязкой и тяжелой нефти в России достигают 6–7 млрд. т. По разведанным запасам тяжелой нефти Россия занимает третье место в мире после Канады и Венесуэлы. Эти цифры свидетельствуют о неизбежности высоких объемов освоения тяжелой нефти в ближайшем будущем.

Разведанные в России запасы тяжелой нефти, с плотностью более 0,904 г/см3, составляли на начало 2009 года 14,8% от их общей величины. Сосредоточены они в трех основных провинциях – Западно-Сибирской (48,4%), Волго-Уральской (29,2%) и Тимано-Печорской (18,2%). В 2008 г. добыто 5,6% от общей добычи нефти в России, но практически весь объём их добычи - 90% - приходится на европейскую, наиболее населённую часть России. Приходится ожидать и дальнейшего увеличения добычи тяжелой нефти в европейской части России, поскольку резервы открытия здесь запасов качественной нефти уже не велики, а имеющаяся инфраструктура и растущие объемы потребления нуждаются в поддержании добычи.

Важным показателем экологических свойств нефти является её растворимость. Растворимость нефти зависит не только от их свойств и состава, но также и от свойств растворителя и его температуры. Они хорошо растворяются в углеводородных и, особенно, углекислых газах, поэтому последние часто рассматривают как среду-носитель нефти при их миграции, особенно в высокотемпературных условиях глубоких недр. В воде они малорастворимы - до 130-160 см3/м3. Чем легче нефть, выше температура и меньше минерализация воды, особенно при ее гидрокарбонатно-натриевом составе, тем выше растворимость нефти в воде. Смоло-асфальтеновые фракции нефти малорастворимы не только в воде, но и в газах. Отсюда их более низкая миграционная способность, усугубляемая к тому же большими размерами их молекул.

Их поведение в приповерхностных условиях, т.е. в условиях температур, как правило, ниже 40-450С, остается сравнительно благоприятным - они мало растворимы, а следовательно, и мало миграционно-подвижны. Но если, к примеру, добыча высоковязкой нефти сопровождается применением парогенераторов, или методов подземного горения, экологическая ситуация резко меняется. Их растворимость в нарастающем ряду от метановых к нафтеновым и ароматике увеличивается, причем в 2-3 раза. К примеру, малорастворимые в нормальных условиях в воде бензол, толуол, бенз (а)-пирены, многие смоло-асфальтеновые фракции становятся растворимыми. Они выносятся с горячими водами из зоны добычи, загрязняя водоносные горизонты. Это же свойство нефти растворяться в сверхгорячих пластовых водах особенно с минерализацией менее 100 г/л следует учитывать и при сбросе нефтяных пластовых вод, попадающих на поверхность при добыче УВ с больших глубин, обычно более 4,0 км в бассейнах с высоким тепловым потоком.

Важной характеристикой свойств нефти является также температура их кипения. Углеводороды имеют весьма разные молекулярные массы - от 16 для метана до тысяч единиц для тяжелых смоло-асфальтеновых фракций нефти. В соответствии с их массой, при нагревании происходит фракционирование нефти. Это важнейшее технологическое свойство нефти - основа переработки на нефтеперегонных заводах. Оно важно также и при изучении экологических свойств нефтепродуктов, поскольку сера и значительная часть металлов концентрируется в их наиболее тяжелых остаточных фракциях.

Технологически разделяют нефти на фракции, выкипающие при разных температурах с выходом разных продуктов их перегонки. На долю тяжелых фракций даже легкой нефти приходится более трети их состава.

Конденсаты входят в состав фракций, выкипающих до 3500С. При более глубокой перегонке высококипящих фракций - более 3600С получают мазуты, гудроны и, наконец, кокс. Именно эти остаточные продукты глубокой перегонки концентрируют содержащиеся в нефти V, Ni и ряд других элементов (таблица 1). Hg, As и другие летучие элементы-примеси покидают нефть на более ранних стадиях перегонки, вместе с её легкими фракциями, а Hg может быть полностью потеряна нефтью ещё в ходе её добычи и промысловой подготовки к транспортировке.

Таблица 1. Концентрирование металлов в продуктах получаемых из тяжелой сернистой нефти

Месторождение, характеристика сырья и продуктов перегонки Плотность, т/м3 Содержание

S, % вес. V2O5, г/т Ni, г/т

Каражанбас (Мангышлак):

сырая нефть

Арланское (Урало-Поволжье):

сырая нефть

Усинское (ГПП), Р1+С2:

сырая нефть

мазут (св.450°С)

Подчеркнем, что в области экологических воздействий на среду, с процессами, имитирующими фракционную перегонку нефти, приходится иметь дело не только на НПЗ или при утилизации их тяжелых фракций - мазутов, гудрона и др., но также при добыче тяжелой высоковязкой нефти методом пластового горения. Мною последствия этого процесса изучались на полуострове Бузачи в Казахстане. В этой ситуации температуры, развиваемые в пласте, местами превышают 5000С. Флюидная система в залежи превращается в высокоагрессивную парогазо- углеводородную субстанцию с ярко выраженными свойствами растворителя и большим давлением. Ее удержание в пределах разрабатываемого пласта затруднительно, наиболее легкие фракции легко распространяются по другим пластам с благоприятными коллекторскими свойствами, иногда вырываясь на поверхность или в приповерхностные горизонты по старым скважинам, которых на таких площадях обычно множество. Это наиболее опасный в экологическом отношении метод добычи, в основе которого как раз и лежит внутрипластовая фракционная перегонка нефти.

В главе рассматривается химический состав нефти, основные неуглеводородные примеси в углеводородах с точки зрения их влияния на окружающую среду на всех стадиях освоения и утилизации нефтяного, газового и битумного сырья. Подробно изучены металлокомплексы в нефти и природных битумах. По разным оценкам в нефти и природных битумах выявлено свыше 50-60 разных элементов, значительная часть которых представлена металлоорганическими соединениями, такими, в частности, как металлопорфирины, а также рассеянными и редкими элементами. Их истоки в нефти полигенны и начинаются от прижизненного накопления металлов биотой, превращающейся впоследствии в ОВ. В свою очередь ОВ - прекрасный сорбент многих элементов, дополнительно обогащаемый ими из вмещающей среды в ходе седименто-, диа- и протокатагенеза. Дальнейший катагенез пород с захороненной органикой генерирует УВ. Последующий онтогенез УВ уже обогащенных металлокомплексами, каптированными из ОВ, приводит к контактам с разными средами и множеству обменных физико-химических процессов и реакций в недрах по пути миграции и в ловушках. Эта схема преобразований хотя и затрудняет корректные решения вопросов генезиса металлообогащенных нефтяных залежей, но не исключает этой возможности, особенно в ситуациях, связанных с ураганными содержаниями металлов в нефти, вплоть до превышений на несколько порядков сравнительно с фоном для, например, V, Ni, U и некоторых других элементов. Так на месторождении тяжелой нефти и природных битумов Бокан (Венесуэла) содержание V достигает 1,2-1,4 кг/т. В Зимницком (РФ, Поволжье) -1,1 кг/т, а в Садкинских асфальтитах (РФ, Оренбургская обл.) - 3,6 кг/т. Содержание никеля в последних составляет 0,64 кг/т. Подобного рода нефтяные месторождения нередко рассматриваются и реализуются как комплексные металлонефтяные (битумные) месторождения с кондициями конкурентоспособными с рудами.

Важно также подчеркнуть, что молекулярной особенностью таких сложных полициклических систем, как смоло-асфальтеновые соединения, является прочность молекулярной связи значительной части накопленных ими неуглеводородных компонентов-примесей в обычных термодинамических условиях недр. Это обеспечивает не только их сохранность на протяжении геологического времени, но и концентрирование при фракционировании нефти в ходе онтогенеза. Вместе с потерей нефтью легких фракций параллельно идет её обогащение тяжелыми фракциями вместе с содержащимися в них компонентами-примесями. В недрах реален и обратный процесс - разубоживание содержаний смоло-асфальтеновых фракций при миграционном "промыве" ранее сформировавшейся залежи тяжелой нефти более легкой нефтью, и, особенно, газоконденсатами. Но это "разбавление" не разрывает молекулярных связей асфальтенов с каптированными ими V и Ni. Их разрыв происходит лишь при высокотемпературных воздействиях - более 450-6000С, возможных в природной среде только при эруптивной активизации недр или техногенно в ходе нефтеперегонных технологий. В целом же разрыв молекулярных связей УВ с элементами-примесями идет в полном соответствии с летучестью последних. Наиболее высокая она для Hg, As, U и ряда других элементов, низкая - для V, Ni, Со, Сr и др.

Несмотря на недостаточную изученность характера соединений ванадия и никеля, присутствующих в нефти в наибольших количествах, не вызывает сомнений важность их трех основных свойств, имеющих для обсуждаемой нами проблемы основное значение:

практически весь V и Ni, присутствующий в нефти, концентрируется при их перегонке в остатках тяжелых фракций с температурами кипения выше 4500С;

соединениям V и Ni свойственны прочные связи с смоло-асфальтеновыми компонентами нефти, не разрушающиеся даже в ходе геологической их истории в зоне гипергенеза;

распад молекулярных связей с содержащими их металлоорганическими соединениями происходит преимущественно техногенным путем при высокотемпературных воздействиях.

Именно в условиях переработки и утилизации нефти и происходит основное рассеяние тяжёлых токсоэлементов в окружающую среду. Сырые нефти (битумы) сохраняют их в связанном состоянии, не загрязняя вмещающую их среду.

Рассмотрен и проанализирован состав природных газов, с точки зрения нахождения и воздействия на окружающую среду потенциально токсичных компонентов. В природных газах, нередко случайно, выявляются также и наиболее летучие соединения элементов-примесей, особенно, такие как As и Hg. Как правило, они связаны с неотектонически активизированными бассейнами и особенную опасность представляют в ходе их добычи и переработки. Среди экологически неблагоприятных компонентов в природных газах наиболее распространен H2S.

Изучена биологическая активность природных углеводородов и сопутствующих им потенциально токсичных элементов примесей. Определена терминология которая используется в работе при характеристике биологической роли и токсичности различных веществ, а также присутствует в справочниках.

Формирование перечня основных биотоксикантов распространенных в УВ - находится ныне в начальном этапе исследований, а пограничная биолого-геологическая позиция проблемы привела это важнейшее положение к неопределенности. Геологи знают об опасности сырья с токсичными примесями и могут оценить геохимию его поведения в окружающей среде. Но они не располагают сведениями о формах и активности их биовоздействия. Медико-биологическая экспертиза фиксирует состоявшиеся поражения, опаздывая с защитой. Более того, она в большинстве случаев не может идентифицировать тип или природу загрязнителя, особенно в условиях высокой и разнообразной промышленной нагрузки. Кроме того, токсикологи изучают отдельные компоненты этого сырья и их воздействие при расчетах допустимых концентраций в очень ограниченном круге задач - например, при расчетах ПДК или ОБУВ в воздухе производственных помещений и т.п. Поэтому поиск и выбор данных, пригодных для целей нашей работы, был затруднителен.

В качестве основных критериев формирования перечня и характеристики биотоксичных компонентов в составе природных углеводородов, в порядке значимости, были приняты следующие:

• наличие достоверных сведений об опасности элементов и соединений, присутствующих в нефти или продуктах их переработки: ПДК, ОБУВ и пр.;

• установленное наличие токсоопасных соединений в природном углеводородном сырье, включая количественные показатели их присутствия и распространённость;

• наличие экспериментальных данных или теоретических предпосылок к возможности оценки токсического действия соединения на организм человека или животных;

• наличие поставленных методик количественного определения концентраций соединений в различных средах, включая экспрессные.

Современное состояние изученности не дает нам оснований для полной реализации всех перечисленных параметров, но на основе имеющегося справочного материала перечень главных токсоопасных компонентов, часто присутствующих в УВ, можно определить. Главные из них представлены тремя классами соединений - углеводородными, серосодержащими и металлокомплексами. В их числе: группы УВ, H2S, SO2, меркаптаны, Hg, As, V, Ni, U, Pb, Cd, Сr, Zn, Мо, Со и Сu.

В работе рассмотрены основные свойства опасных для биологических объектов компонентов-примесей, наиболее широко распространенных в углеводородном сырье. При оценке их биотоксичности использовались официальные документы санитарно-гигиенических и токсикологических служб России, Германии, Франции, рекомендации ВОЗ и справочники (таблица 2).

. Распределение элементов, распространённых в нефти, по степени их токсичности для человека

Не токсичны Мало (умеренно)


загрузка...