Синтез и свойства координированных D-элементами нитрилов в реакциях присоединения, замещения и диенового синтеза (02.08.2010)

Автор: Дюмаева Ирина Владимировна

ZnCl2•ARN 1,347 0,2714 1,434 0,0218 2,094 24,8308

Определенные с помощью квантовохимических расчетов изменения в напряжениях, порядках и длинах связей, а также зарядов на атомах непосредственно влияют на изменения спектроскопических констант. ИК-спектры синтезированных комплексов получали на спектрофотометре «Bruker» в области 4000-400 см-1 с точностью ±1 см-1.

Сдвиг частот ?(CN) к высшим частотам, показывающий увеличение индуктивного эффекта в координированном ацетонитриле придает положительный заряд атомам азота, что подтверждает проведенные расчеты. При этом ??(CN) для FeCl3•NC(CH3, составляющий +21 см-1, значительно больший, чем ??(CN) = +7 см-1 для CoCl2•NC(CH3 не обязательно характеризует FeCl3 как более сильные кислотные центры по сравнению с CоCl2 и, соответственно, сдвиг частот ?(CN) не прямо зависит от силы кислоты, а является суммарным результатом изменений, происходящих под действием координации. Из таблицы также видно, что ((СН3)-частоты значительно ниже у комплексов, чем у свободного ацетонитрила, следовательно индуктивный эффект металла выше, чем сила координации нитрильной группы. В таком случае атом азота приобретает положительный заряд за счет х-передачи от заполненных р-орбиталей азота к d-орбиталям металла.

В целях выявления полной картины происходящих изменений в лигандах интересно было рассмотреть некоторые особенности, касающиеся влияния центрального атома.

По результатам ИК-спектроскопических исследований можно отметить, что акрилонитрильные лиганды в комплексах MXn•ARN подвергаются усиленным индуктивным и резонансным эффектам под влиянием поля центрального атома.

Интерпретация ((СН2) частот виниловых связей ARN убедительное доказательство отмеченному выше — ((СН2) — частоты понижаются по отношению к ARN с увеличением индуктивного эффекта заместителя, вместе с тем увеличение ?(CN) чувствительно к увеличению резонансных эффектов. Оба эффекта, имеющие место в лиганде, очень сильно влияют на крутильные и маятниковые колебания в области 970 см-1, которые смещаются в область высших и низших частот, соответственно.

Сдвиг частот ?(C?N) к высшим частотам, показывающий увеличение индуктивного эффекта в координированном лиганде придает положительный заряд атому азота. Схематически это можно изобразить следующим образом: CH2=CH(C?(+)N--M(-). Следует отметить, что увеличение частоты взмаха нитрильных лигандов значительно выше по сравнению с соответствующими колебаниями ARN. Это показывает, что резонансные эффекты увеличиваются у комплексов за счет перекрывания р-орбиталей азота со свободными d-орбиталями металла или же наоборот. Сдвиг частот ?(C?N) к высшим частотам показывает присутствие CN-группы в комплексе. Расщепление и сдвиг к низшим частотам ((С=С) подтверждает р-передачу от винильной группы к металлу. Последнее объясняется сильным увеличением интегралов перекрывания CN-группы по сравнению с резонансным эффектом, благодаря которому происходит оттягивание электронов винильной группы т.е. от С=С-связи к металлу.

1.2. Нитрильные комплексы в реакции галогенирования

Активность синтезированных комплексов в парофазном хлорировании оценивалась по выходу монохлор- и трихлорацетонитрила. Реакция проводилась в интервале температур 200-450 °С при соотношении ацетонитрила:хлор = 1:2.

Максимумы выхода МХА и ТХА соответствуют различным температурам на различных катализаторах. При этом на некоторых катализаторах (ZnCl2, FeCl2, NiCl2) наблюдается пропорциональный рост выхода продуктов хлорирования, т.е. с ростом количества МХА увеличивается выход ТХА в интервале 200-400 °С. Исключением из этой закономерности является нанесенный медьхлоридный катализатор, на котором с резким ростом выхода МХА происходит снижение выхода ТХА в интервале температур 250-400 °С (рис. 1.3).

Из сопоставления полученных экспериментальных данных можно вывести ряд каталитической активности изученных систем по выходу МХА:

ZnCl2 (1)

Аналогично, ряд каталитической активности по выходу ТХА имеет вид:

FeCl2>NiCl2>ZnCl2>CuCl2>MnCl2>CrCl2 (2)

Как показали экспериментальные данные при парофазном хлорировании ацетонитрила на хлоридах d-элементов на силикагеле образуется смесь моно- и трихлорацетонитрила. При этом выход монохлорацетонитрила (МХА) достигает 63,1% (CuCl2), что представляет практический интерес. А выход трихлорацетонитрила (ТХА) не превышает 23,0% (FeCl2).

Жидкофазное хлорирование ацетонитрила было проведено в присутствии CuCl2, FeCl2, CoCl2, NiCl2, ZnCl2 в реакторе полного смешения барботажного типа в интервале температур 0-70 °С, в течение 8 ч и соотношении масс ацетонитрила и хлора равном 1:2.

Рис. 1.3 Зависимость выхода монохлорацетонитрила (1) и трихлорацетонитрила (2) от температуры в присутствии СиС12 при парофазном хлорировании

Рис. 1.4 Зависимость выхода трихлорацетонитрила от температуры при мольном соотношении ACN:Сl2 = 1:2, ? = 12 ч, при жидкофазном хлорировании

Расчетное количество хлорида d-элемента тщательно растворяли в ацетонитриле при 70 °С в течение 20-25 мин, затем температуру реакционной смеси охлаждали и пропускали в систему Сl2 со скоростью 0,5 ч-1.

Изучение влияния температуры процесса показало, что максимальный выход ТХА достигается при 50-60 °С и дальнейшее увеличение температуры не приводит к повышению выхода. В зависимости от природы растворенных хлоридов d-элементов выход ТХА варьируется в интервале 20-63%, достигая максимального значения для раствора хлорида меди — 63%. В случае высокой температуры (более 400 °С) имеет место разрушение комплекса хлорида меди с нитрилом, идет процесс заместительного радикального хлорирования и образования, в основном, монохлорацетонитрила.

Результаты экспериментов показывают, что наиболее перспективными катализаторами жидкофазного хлорирования ACN являются хлориды d-элементов, которые можно расположить в следующий ряд:

CuCl2>FeCl2>ZnCl2>CoCl2>NiCl2>MnCl2 (3)

Таким образом, выбор жидкофазного хлорирования ацетонитрила оправдывает себя в случае синтеза ТХА, для которого парофазный процесс неселективен.

Активность нанесенного медьхлоридного катализатора в реакции парофазного хлорирования акрилонитрила оценивали по выходу (, ?-ди-хлорпропионитрила и (- и ?-монохлоракрилонитрила. Реакцию вели в интервале температур 150-450 °С при молярном соотношении ARN:хлор = 2:1 (рис. 1.5).

Рис. 1.5 Зависимость выхода (-монохлоракрилонитрила (1),

?-монохлоракрилонитрила (2) и (, ?-дихлорпропионитрила (3)

от температуры в присутствии CuCl2

Выход (, ?-дихлорпропионитрила имеет максимальное значение при температуре 175 °С, далее при повышении температуры происходит резкое снижение его выхода в интервале 175-250 °С. В этом же интервале температур происходит монотонное увеличение выхода монохлорпроизводных акрилонитрила. Как можно заметить, для акрилонитрила существует некоторая «критическая» температура, при которой начинает преобладать замещение (~200 °С в присутствии CuCl2) и пропорционально снижению выхода (, ?-дихлорпропионитрила, по мере увеличения температуры, возрастает выход (, и ?-монохлорзамещенных. Конкурирующие реакции замещение - присоединение идут по цепному механизму. Как видно из графика, замещение быстрее протекает в (-положении и затем на ?-углеродном атоме. Рассматривая кривые зависимости выхода хлорнитрилов от времени контакта и температуры (рис. 1.6), можно видеть, что при низких временах контакта имеет место образование дихлорпроизводных, т.е. происходит присоединительное хлорирование. По мере увеличения времени контакта наблюдается образование (, и ?-монохлорзамещенных акрилонитрила и максимальный выход последних достигается при времени контакта 5-6 с.

Рис. 1.6 Зависимость выхода хлорпроизводных акрилонитрила

от времени контакта при различных температурах в присутствии CuCl2

Проведенные исследования показали, что высокотемпературное хлорирование протекает в основном с образованием монохлорзамещенных акрилонитрила, причем, монохлорзамещенные нитрилы образуются как из исходных компонентов реакции, так и из дихлорпропионитрила - реакцией обратной хлорированию - дегидрохлорированием. Таким образом, хлорирование нитрилов, в особенности непредельных, сложный многостадийный процесс, развивающийся одновременно по ряду конкурирующих направлений.

В результате глубокого исследования предпосылок и стадий образования каталитически активных комплексов нитрилов с хлоридами d-эле-ментов, выявлены внутримолекулярные факторы, изменяющие физические параметры на микроуровне взаимодействия атомов и связей внутри координированной молекулы нитрила, влияющие на процесс хлорирования.

Так, увеличение прочности C?N связи при координации ацетонитрила с хлоридами металлов d4-d10 приводит к уменьшению длины этой связи с 1,158 А° до 1,145 А° и смещению ?(CN) в область более высоких частот (от +5 до +21 см-1), образуя ряд по ??(CN):

CuCl2 > ZnCl2 > CoCl2 > FeCl2 (4)

Увеличение ?(CN) под действием координации приводит к увеличению силовых констант связи CN.

Известно, что информативность ИК-спектроскопии в оценках электронной структуры определяется зарядовыми характеристиками атомов молекулы. Частота колебания, которая равна разности энергий двух соседних колебательных уровней Еn и En+1 для гармонического осциллятора, пропорциональна К - силовой постоянной связи между М и N и обратно пропорциональна их приведенной массе m:

Е = Еn+1 - En = h? = (h/2?)(К/m)1/2 ? = (l/2?)(K/m)1/2.

Используя эти соотношения, можно регистрируемую частоту колебаний ? или ?? однозначно связать с силовой постоянной связи M(N и C?N в координированных комплексах. Таким образом, для тех комплексов, где регистрируется большее значение ??(CN), соответствует и большее значение силовой постоянной связи M(N.

Таблица 1.2

Некоторые рассчитанные характеристики атомов и связей


загрузка...