Основы теории живучести железобетонных конструктивных систем при запроектных воздействиях (01.06.2009)

Автор: Клюева Наталия Витальевна

Научная новизна работы состоит в решении актуальной научно-технической проблемы – создании основ теории и методов расчета живучести конструктивных систем из железобетона, в частности:

- сформулированы исходные гипотезы для построения основ теории живучести конструктивных систем из железобетона, касающиеся физических соотношений для силовых и коррозионных воздействий, особенностей процесса нагружения, критериальных характеристик деформирования конструктивно и физически нелинейных систем;

- построена расчетная модель силового сопротивления эксплуатируемого железобетона, учитывающая одновременно протекающие коррозионные процессы изменения прочностных и деформативных характеристик материалов в нагруженных элементах конструкций и дополнительные динамические догружения от структурных изменений в конструктивной системе при внезапных выключениях из работы ее элементов;

- установлены критерии живучести внезапно повреждаемых железобетонных балочных и рамно-стержневых систем, в том числе с односторонними связями, при запроектных воздействиях;

-получены новые результаты экспериментальных и численных исследований живучести физически и конструктивно нелинейных железобетонных балочных и рамных систем при совместном проявлении силового нагружения, коррозионных воздействий и догружений, вызванных внезапными структурными изменениями в элементах таких систем;

- разработаны рекомендации по проектированию железобетонных конструктивных систем, устойчивых к прогрессирующим обрушениям при внезапных запроектных воздействиях.

Практическая значимость работы. Разработанный теоретический аппарат по расчету живучести железобетонных балочных и рамно-стержневых конструктивных систем при средовых, силовых и деформационных запроектных воздействиях позволяет выполнить расчет живучести и прогнозировать состояние конструктивных систем из железобетона в запредельных состояниях. Учет такого прогноза при проектировании физически и конструктивно нелинейных систем из железобетона, в дополнение к традиционным методам оценки конструктивной безопасности строительных систем по предельным состояниям, оценить возможные перераспределения силовых потоков в сооружениях и, как результат, проектировать конструктивные системы зданий и сооружений, адаптационно приспособляемые к внезапным запроектным воздействиям.

Достоверность полученных результатов исследований подтверждается использованием фундаментальных положений строительной механики и механики железобетона при построении исходных предпосылок и расчетных зависимостей теории живучести железобетона, сопоставлением результатов расчета с данными экспериментальных исследований, выполненных как автором так и другими специалистами, а так же практикой проектирования конкретных объектов с расчетом их живучести по предложенной теории.

Доклады и публикации. Материалы исследований докладывались и обсуждались на VII международном научно-практическом семинаре «Перспективы развития новых технологий в строительстве и подготовке инженерных кадров республики Беларусь» (Брест, Брестский ГТУ, 2001), международной научно-практической конференциия «Строительство 2002» (Ростов на Дону, РГСУ 2002), шестой традиционной (первой международной) научно-практической конференции молодых ученых, аспирантов и докторантов (Москва, МГСУ, 2002), вторых международных академических чтениях РААСН «Новые энерго-ресурсосберегающие архитектурно-конструктивные решения жилых и гражданских зданий» (Орел, ОрелГТУ, 2003), III международных академических чтениях РААСН «Проблемы обеспечения безопасности строительного фонда России» (Курск, КурскГТУ, 2004), третьей международной научно-практической конференции «Развитие современных городов и реформа жилищно-коммунального хозяйства» (Москва, МИКХиС, 2005), международном научно-практическом семинаре «Актуальные проблемы проектирования и строительства в условиях городской застройки» (Пермь, Пермь ГТУ, 2005), на II академических чтениях им.проф. А.А. Бартоломея «Геотехнические проблемы XXI века в строительстве зданий и сооружений» (Пермь, Пермь ГТУ, 2007), на заседании ученого совета отделения строительных наук РААСН (Москва, РААСН, 2007), на международном конгрессе «Наука и инновации в строительстве» SIB – 2008 (Воронеж, ВГАСУ, 2008), научной сессии «Особенности проектирования пространственных конструкций на прочность, устойчивость и прогрессирующие разрушения» (Москва, МОО «Пространственные конструкции», 2009), на кафедре «Строительные конструкции и материалы» Орловского государственного технического университета (Орел ГТУ, 2009), на кафедре «Железобетонные конструкции» Московской государственной академии коммунального хозяйства и строительства (Москва, МГАКХиС, 2009).

Исследования проводились в рамках наиболее важных НИР плана РААСН на 2004 – 2008 гг (№ ГР 0120.0 704533; 0120.0 507531; 0120.0 612532); федеральной целевой программы «Развитие научного потенциала высшей школы (2006-2008 гг)» (проект «Разработка концепции обеспечения безопасности объектов системы высшего профессионального образования и целевой программы предупреждений и защиты от чрезвычайных и кризисных ситуаций», № ГР 0120.0 603654), плана фундаментальных НИР ГОУ ВПО «Орловский государственный технический университет» на 2007-2009 (№ ГР 01.2.007 05083), грантов РФФИ № 09-08-99024-Р-ОФИ, № 06-08-96321 и гранта молодых ученых РААСН: 2.2.32. «Разработка элементов теории и эффективных алгоритмов расчета живучести внезапно повреждаемых железобетонных стержневых конструкций (2007 г)».

Результаты исследований опубликованы в 37 научных публикациях, в том числе монографии и 16 научных работах из Перечня периодических изданий рекомендованных ВАКом России для публикации материалов докторских диссертаций.

Структура и объем работы. Диссертация состоит из введения, шести глав, общих выводов, списка литературы и приложений. Работа изложена на 450 страницах, в том числе 119 рисунков, 16 таблиц, 292 наименования литературных источников (25 страниц).

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранного направления исследований и определена область практического использования полученных результатов. Приведена общая характеристика работы и ее основные положения, которые автор выносит на защиту. Обосновывается принятый в работе концептуально – методологический подход к анализу живучести конструктивных систем из железобетона при запроектных воздействиях.

В первой главе диссертации дан анализ современной теории и существующих оценок конструктивной безопасности зданий и сооружений. Показано, что в настоящее время теория расчета строительных конструкций и нормативная база для их проектирования опираются, в основном, на базовые положения метода предельных состояний. Главной задачей такого расчета является исключение наступления предельных состояний для эксплуатируемых объектов недвижимости. Между тем, такой подход уже не отвечает современным вызовам. Помимо участившихся катастроф природного характера, значительно возросла вероятность возникновения опасностей техногенного характера, в том числе опасностей, связанных с террористическими проявлениями. Необходимы новые, адекватные этим вызовам, концептуально – методологические подходы к обеспечению конструктивной безопасности строительных систем, с оценкой их силового и средового сопротивления в расширенном функциональном пространстве. Если при формулировке понятия «безопасность» исходить из императива приемлемого риска, то в более широком смысле этого термина в понятие «конструктивная безопасность» должно включаться также и понятие «живучесть» конструктивной системы. Под термином «живучесть» в работе понимается свойство конструктивной системы выполнять заданные функции в течение эвакуационного промежутка времени в полном или ограниченном объеме при отказе одного или нескольких элементов, т.е. характеризующееся количеством локальных разрушений конструктивной системы.

По мере изучения проблемы установлено, что одним из наиболее эффективных на данном этапе подходов к анализу живучести зданий и сооружений при запроектных воздействиях является обобщение и развитие базовых положений теории расчета строительных конструкций по предельным состояниям. В настоящее время отдельные предложения в этом направлении уже содержатся в исследованиях отечественных и зарубежных ученых, в числе которых можно отметить работы А.В. Александрова, В.В. Болотина, В.М. Бондаренко, М.В. Берлинова, Г.А. Василькова, Г.А. Гениева, П.Г. Еремеева, Н.Н. Стрелецкого, Э.Н. Кодыша, Н.И. Карпенко, В.И Колчунова, И.Е. Милейковского, А.Е. Ларионова, А.В. Перельмутера, Б.С. Расторгуева, В.И. Травуша, А.Г. Тамразяна, В.П. Чиркова, Г.И. Шапиро, В.С. Уткина, В.С. Федорова и др.

Использование обозначенного концептуально – методологического подхода развития теории конструктивной безопасности связано с применением современных деформационных моделей силового и средового сопротивления железобетона. В этом направлении в стране и за рубежом накоплены значительные экспериментально и теоретические исследования, в числе которых можно отметить работы Н.Х. Арутюняна, С.В. Александровского, В.М. Бондаренко, С.В. Бондаренко, Т.И. Барановой, В.Н. Байкова, А.А. Гвоздева, Г.А. Гениева, А.Б. Голышева, Г.И. Васильева, А.С. Залесова, А.В. Забегаева, Н.И. Карпенко, С.И. Меркулова, В.И. Мурашева, А.Г. Назаренко, В.И. Римшина, Р.С. Санжаровского, С.М. Скоробогатова, Б.С. Соколова, Г.А. Смоляго, С.Н. Шоршнева, Е.А. Чистякова, Р.Л. Маиляна и др. Благодаря этим и другим исследованиям к настоящему времени накоплен значительный опыт по анализу отказа элементов конструкций при различных воздействиях.

Современные базовые понятия конструктивной безопасности были сформулированы Ю.Н. Работновым, В.М. Бондаренко, А.В. Александровым, Г.А Гениевым, В.И. Травушем. Им принадлежит одна из основополагающих идей в проблеме конструктивной безопасности сооружений – идея о необходимости учета режимного нагружения сооружений и предыстории их существования. Ими и другими учеными заложены принципиальные основы расчета безопасности железобетонных конструкций, с учетом износа и эволюционного накопления коррозионных и других средовых повреждений. Тем не менее, в этих работах теория конструктивной безопасности железобетона построена в рамках традиционных положений метода предельных состояний и не распространяется на системы с приобретенной конструктивной нелинейностью и, тем более, системы с внезапно выключающимися конструктивными элементами. Не разработаны основы теории живучести физически нелинейных сооружений с изменяющимися конструктивными и расчетными схемами при разрушении, не изучены последствия внезапно приложенных к конструкциям запроектных воздействий, вызванных аварийными и чрезвычайными ситуациями, недостаточно исследовано силовое сопротивление железобетонных конструкций при внезапных выключениях из работы отдельных элементов и разрушениях локальных зон. Отдельные работы этого направления носят пока еще постановочный характер.

На основе проведенного обзора и анализа научных публикаций по рассматриваемой проблеме сформулированы цель и задачи диссертационных исследований.

Во второй главе диссертации рассмотрена теория живучести внезапно повреждаемых конструктивных систем из железобетона. Формулировки решений класса теоретических задач живучести в рамках обозначенной проблемы о динамическом деформировании физически и конструктивно нелинейных систем из железобетона в запредельных состояниях базируются на энергетическом подходе без привлечения аппарата динамики сооружений.

Физической основой теории живучести явилась специфическая посылка В.М. Бондаренко о феноменологическом единообразии кинетики неравновесных процессов повреждений и развития нелинейных деформаций, а так же о константности режимных, физико-механических и термодинамических факторов внешних воздействий на бетон.

Природа несиловых агрессивных воздействий может быть разной, однако с феноменологической точки зрения, процесс развития повреждений и силового сопротивления поврежденных конструкций имеет единообразное описание. Силовое сопротивление железобетонных статически неопределимых систем со средовыми повреждениями и прогрессирующими разрушениями, вызванными внезапными локальными изменениями или разрушениями элементов, можно представить единой математической зависимостью (1), отражающей кинетику неравновесных процессов продвижения повреждений и изменения характеристик силового сопротивления поврежденного бетона:

где ?L(t,t0) – текущее значение параметра повреждений нагруженного железобетонного элемента с изменяющимися характеристиками силового сопротивления, определяемое из выражения:

t - текущее время, t0- время начала наблюдений, ?,m – параметры скорости, вида повреждений, как функции уровня и знака напряженного состояния.

Разделяя переменные, проинтегрировав обе части (1), определив из начального условия постоянную интегрирования и учитывая, что исходная зависимость (1) предполагает константность режимных, термодинамических и физико – химических факторов внешних воздействий, Lпр, ?, L(t0) – постоянные величины, а m - скачкообразно меняющийся параметр времени t (m=m0, при t0?t<t1 и m=m1, при t?t1) получим функцию вида:

Графически (3) и (4) проиллюстрированы рис. 1, а

В решаемой задаче расчета живучести коррозионно повреждаемых конструкций в качестве L рассматривается глубина повреждения сечения железобетонного элемента коррозией ((t,t0). Причем при m>0 функция ((t,t0) описывает энтропийно затухающую кинетику процесса L; при m<0 его лавинно – прогрессирующее развитие; при m=0 его линейные изменения во времени, некоторое граничное положение (применительно к повреждениям – фильтрационную кинетику).

Решение уравнения кинетики повреждений (1) после разделения переменных имеет вид:

в соответствии с исследованиями Е.А. Гузеева, В.П. Селяева, О.Б. Чупичева зависит от уровня напряженного состояния.

(1–область лавинообразного развития (m<0); 2–область затухающего развития (m>0); 3–граничная линия (m=0))

Из графика рис.1 следует, что продвижение кинетики неравновесных процессов в глубь сечения и, соответственно, накопление повреждений в некоторый момент времени t может смениться внезапным лавинообразным разрушением сжатого бетона (кривая 1, при t >t1).

), как функции уровня и знака напряженного состояния, при аппроксимации полиномами представляются в следующем виде (рис. 1, б):

- параметры, определяемые экспериментально.

При внезапных структурных изменениях в элементах конструктивной системы возникают динамические догружения системы. Определение приращений динамических усилий в элементах железобетонных конструкций при внезапных структурных изменениях в сечениях системы предложено выполнить на энергетической основе без привлечения аппарата динамики сооружений.

Рассмотрена статически неопределимая рамно – стержневая конструктивная система из железобетонных изгибаемых или внецентренно – нагруженных элементов под действием эксплуатационной проектной нагрузки и внезапного выключения из работы одного из элементов или связей, например с1 (см. рис. 4,б). В результате исходная n – раз статически неопределимая система превращается в n-1раз статически неопределимую систему. В элементах n-1 раз статически неопределимой системы возникает динамический эффект и, соответственно, появятся дополнительные динамические усилия. Эти усилия в течение первого полупериода колебаний элементов системы (n-1) будут превышать усилия, соответствующие статическому нагружению заданной проектной нагрузкой системы (n-1) и, соответственно, на диаграммах деформирования оставшихся неразрушенными элементов системы, в том числе и рассматриваемого i-го элемента, возникнут затухающие во времени колебания с соответствующими динамическими параметрами деформирования ?nd, Mnd, ?n-1d, Mn-1d (рис.2).

Не ограничивая общности вывода и не конкретизируя аналитическое выражение нелинейной диаграммы общего вида «обобщенное усилие - кривизна» (М-?), используя условие стационарности полной потенциальной энергии относительно точки статического равновесия на соответствующих кривых деформирования можно записать:

Условие (11) для рассматриваемых нелинейных диаграмм «пластического типа» приводит к следующим соотношениям:

Конкретизация расчетных зависимостей по определению приращений динамических усилий и кривизн в элементах конструктивной системы выполнены для различных диаграмм статического и динамического деформирования сечений железобетонных элементов.

Так в случае аппроксимации диаграмм «М-?» простейшей параболой, интегрирование выражения (11) приводит к следующему уравнению для определения искомого значения кривизн ?n-1d:

где ? – коэффициент, равный отношению кривизны элемента в системе (n – 1) к кривизне в системе n.


загрузка...