Методическая система обучения дифференциальному и интегральному исчислению функций в контексте фундаментализации образования (01.06.2009)

Автор: Калинин Сергей Иванович

Во Введении работы обосновываются выбор и актуальность темы исследования, указана его основная идея, определены объект, предмет, цель и гипотеза исследования, охарактеризованы задачи, указаны методы и научно-теоретические предпосылки исследования, раскрыты научная новизна, теоретическая и практическая значимость работы, сформулированы основные положения концепции исследования и положения, выносимые на защиту. Кроме того, во Введении приведены сведения об основных этапах исследования, его апробации и внедрении результатов.

В Главе I диссертации «Методологические основы построения методической системы обучения студентов педвуза дифференциальному и интегральному исчислению в условиях фундаментализации образования» рассмотрен феномен фундаментализации математического образования, на методологическом уровне выявлены принципы конструирования эффективной методической системы обучения будущих учителей математики дифференциальному и интегральному исчислению функций в условиях фундаментализации высшего педагогического образования.

В разделе 1.1. «Феномен фундаментализации математического образования. Анализ трактовок» представлены взгляды на понимание фундаментализации образования В. А. Садовничего, Г. И. Саранцева, В. А. Тестова, И. В. Егорченко, Н. В. Садовникова, подчеркнута неоднозначность анализируемых трактовок понятия фундаментализации математического образования. В разделе отмечается также, что широко и многозначно фундаментализацию подготовки будущих специалистов характеризуют и положения Концепции фундаментализации высшего образования, представленной в цитируемой выше статье О. Н. Голубевой, А. Д. Суханова. Это допускает неадекватность употребления обсуждаемого понятия в разных ситуациях и, естественно, привносит в методическую науку определенную терминологическую путаницу и затруднения в исследованиях. В то же время, констатируется в разделе, термин «фундаментальность» («фундаментальный») в классической науке имеет особое значение, несет особую смысловую нагрузку. Словосочетание «фундаментальное знание» или эпитет «фундаментальный» обычно ассоциируются с качественным, глубоким, основательным образованием или знанием. Это побуждает к введению строгого определения понятия «фундаментализация математического образования» и уточнению понятия фундаментализации применительно к математическому образованию будущих педагогов.

Авторская трактовка фундаментализации математического образования необходимо предполагает: насыщение содержания образования новыми научными сведениями, фактами и открытиями в соответствующих направлениях математической науки, включение в программу математической подготовки студентов научно-исследовательской деятельности с первых курсов их обучения в вузе, создание условий для освоения обучаемыми научно-информационной базы с целью эффективного изучения математики, применение в организации математической подготовки студентов достижений методики обучения математике как научной области. Реализация данных положений в отношении подготовки будущих учителей математики способствует переходу на компетентностную модель образования, что выражается в снижении доли репродуктивных подходов в обучении студентов, их знакомстве с современными математическими исследованиями, осмыслении школьной математики с позиций высшей, использовании преподавателем в процессе обучения студентов его собственных фундаментальных исследований. Такая модель способна содействовать сохранению и упрочению российских образовательных традиций, «при которых подготовка специалистов основывается на глубоких фундаментальных знаниях», а также укреплению и расширению связей образования и науки.

Кроме того, представленная трактовка фундаментализации математической подготовки студентов предполагает в практике их обучения опору на методологическую составляющую методики обучения математике. Обучение должно производиться в рамках соответствующей методической системы с учетом составляющих внешней среды последней и опираться на принципы обучения математике в вузе.

В данном разделе подчеркнуто, что приводимое толкование феномена фундаментализации вузовского математического образования не противоречит идеям в отношении фундаментальности образования, высказываемым в разное время В. А. Садовничим и Н. В. Карловым, а также систематическим исследованиям по методологии методики обучения математике Г. И. Саранцева.

Раздел 1.2. «Конструирование методической системы обучения будущих учителей математики дифференциальному и интегральному исчислению функций» посвящен построению методической системы обучения студентов-математиков педвуза основам математического анализа в контексте фундаментализации образования. Методологическую основу конструирования данной системы составляют: системный подход, концепция математической и профессионально-педагогической подготовки будущих учителей математики в условиях фундаментализации образования, принципы обучения математике в высшей школе. В разделе проводится анализ системы на методологическом уровне.

Компонентный состав конструируемой методической системы в себя включает: цели обучения дифференциальному и интегральному исчислению, содержание обучения данному разделу анализа, а также методы, формы и средства обучения. Внешняя среда системы описывается такими тенденциями современного образования, как его фундаментализация и интенсификация, гуманизация и гуманитаризация, дифференциация и индивидуализация, а также общие цели математического образования, предмет математического анализа, место анализа в системе других математических наук и дисциплин естественнонаучного цикла, его применения, структура личности студента и закономерности ее развития, некоторые новые результаты исследований по математическому анализу. Из перечисленных составляющих внешней среды одной из главных является фундаментализация математического образования.

В данном разделе определяются связи между компонентами системы и внешней средой. Последняя наибольшее влияние оказывает на цели обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций. Цели обучения подразделяются на четыре группы: общеобразовательные, развивающие, воспитательные, практические. Отмечается, что в контексте постановки совокупности целей обучения студентов в педвузе дифференциальному и интегральному исчислению каждая из составляющих внешней среды методической системы может занимать доминирующее (лидирующее) положение при формировании соответствующей цели обучения. Приводимый тезис сопровождается соответствующими иллюстрациями.

В этом же разделе показано, что составляющие внешней среды оказывают значительное влияние и на содержание обучения будущих учителей математики дифференциальному и интегральному исчислению функций. В содержание помимо традиционных предметных знаний основ анализа включаются и такие элементы, как действия, адекватные основным понятиям, принципиальным теоремам и утверждениям, общенаучные методы познания, различные эвристики и эвристические приемы, аксиоматический и алгоритмический методы, метод моделирования, обсуждение места дифференциального и интегрального исчисления в математическом анализе и системе других математических дисциплин, изучаемых будущими педагогами, этапы развития анализа, исторические факты, связанные с его становлением, вклад отдельных ученых в его развитие. Автором подчеркивается, что на содержание обучения дифференциальному и интегральному исчислению в педвузе предмет математического анализа оказывает самое непосредственное влияние, в частности влияет его непрерывное расширение и развитие. Последние в контексте новых образовательных тенденций (в том числе фундаментализации и гуманитаризации) побуждают к включению в содержание обучения студентов соответствующих достижений и новых результатов в области математического анализа в последние годы, а также нерешенные проблемы и задачи. Отбор содержания обучения осуществляется на основе системы принципов отбора и представляется развивающейся системой, причем развитие осуществляется через деятельность и преподавателя (обучающего), и студентов (обучаемых).

Метод обучения студентов дифференциальному и интегральному исчислению в работе рассматривается как способ развития деятельностей преподавателя и студента и предметного содержания основ анализа. Приводится общая классификация методов обучения будущих учителей рассматриваемой области математики. В разделе подчеркивается, что в практике работы со студентами автор часто использует такие специальные методы обучения, как метод ключевых и теоретических задач, самостоятельного осмысления новых математических фактов по первоисточникам, формулирования обобщений утверждений, метод научных дискуссий, метод проектной деятельности, представляющие эвристические и исследовательские методы обучения.

Под формой обучения дифференциальному и интегральному исчислению функций понимается способ взаимодействия дидактических приемов преподавателя математического анализа и познавательных действий обучающихся студентов в процессе решения познавательных задач. Формы процесса обучения в вузе диктуются отношениями между преподавателем и студентами в решении учебных задач. Выделяемые в разделе отношения обусловливают рассмотрение фронтальной, коллективной, групповой, индивидуальной, совместной форм. В частности, для совместной формы обучения характерно взаимодействие преподавателя со студентами разных курсов и студентов разных курсов друг с другом в рамках общего занятия или выполнения некоторых заданий. В классификацию форм обучения дифференциальному и интегральному исчислению будущих учителей математики положены количественные характеристики обучаемого контингента.

Феномены фундаментализации и интенсификации, дифференциации и индивидуализации математического образования побуждают к активному культивированию внеаудиторных форм обучения студентов, помогающих решать следующие дидактические задачи: выявлять наиболее способных и талантливых студентов, формировать устойчивый интерес к исследовательской работе, углублять и расширять соответствующие математические знания, навыки и умения обучаемых, развивать математическую интуицию и логическое мышление, повышать уровень математической культуры. Внеаудиторная работа рассматривается как составная часть эффективного учебного процесса.

Из организационных форм обучения, представляющих внеаудиторные формы обучения, особо выделяется студенческий научно-исследовательский семинар, работающий по типу академических научных семинаров. В рамках такого семинара удается организовать изучение дополнительных вопросов дифференциального и интегрального исчисления, важных для профессиональной подготовки будущих учителей математики, осуществлять исследование открытых вопросов и проблем математического анализа. Участвующие в работе семинара студенты учатся находить нужную научную информацию, вырабатывают навыки отслеживания новых научных сведений по интересующей тематике, приобретают опыт ведения исследования и обсуждения научных результатов.

В этом же разделе при характеризации средств обучения дифференциальному и интегральному исчислению функций студентов-математиков педвуза подчеркивается, что в работе со студентами придается большое значение воспитанию в обучаемых потребности самостоятельно изучать учебники по математическому анализу, читать научные, научно-методические и научно-популярные статьи из периодических журналов и сборников (в том числе зарубежных изданий), обращаться к соответствующей литературе учебного и научного характера информационно-электронного ресурса.

Из средств обучения студентов дифференциальному и интегральному исчислению функций особо выделяются математические задачи, имеющие образовательное, практическое, методическое, воспитательное значения. В разделе осмысляется роль так называемых ключевых и теоретических задач. При конструировании систем задач, используемых в обучении студентов, исходим из того, что каждая такая система должна быть нацелена на формирование знаний, умений, навыков и математических компетенций, позволяющих успешно изучать математический анализ; на формирование профессионально значимых знаний и умений; на приобретение навыков самостоятельной работы; на приобщение студентов к творческой и исследовательской деятельности.

В разделе обсуждается также роль компьютера как информационно-технического средства обучения и средства управления учебной деятельностью обучаемых.

Раздел 1.3. «Общие цели математического образования и предмет математического анализа как составляющие внешней среды методической системы обучения» содержит три подраздела. В 1.3.1. «Общие цели математического образования» подчеркнуто, что сегодня в условиях модернизации системы образования на первый план выступает личностно-ориентированное обучение, поскольку само образование характеризуется усилением внимания к обучаемому, к его саморазвитию, к общечеловеческим ценностям, к воспитанию в обучаемых умения находить свое место в жизни. Максимально возможное раскрытие творческих способностей человека и их реализация есть благо одновременно и для общества, и для самого человека, поэтому главной целью системы образования следует считать воспитание личности, способной и готовой к саморазвитию. Главная ценность всей системы образования состоит в ее способности открыть, сформировать и упрочить индивидуальные ценности образования у обучаемых (В. П. Зинченко).

Наблюдающийся информационный бум четко ставит проблему: как научить лучше за меньшее время? Решение этой проблемы видится в следующем: необходимо менять традиционные методы обучения, резко снижать долю репродуктивных подходов, учить критически относиться к изучаемому материалу, воспитывать желание и необходимость анализировать информацию, приобщать к научному исследованию. В отношении обучения любой категории учащихся актуален принцип: важно «учить учиться».

Автор концентрирует внимание на общих целях вузовского математического образования. Одной из таких целей является воспитание и развитие личности средствами математики. Систематическое изучение математики должно преследовать цель формирования у будущих специалистов научного мировоззрения, которое предполагает знакомство с природой научного знания, с принципами построения научных теорий, в том числе естественнонаучных и математических теорий. Это осуществляется посредством осознания взаимосвязи реального и идеального, происхождения математических абстракций из практики, характера отражения математикой окружающего нас мира, роли математического моделирования в научном познании и в практике.

К общим целям математического образования относим также обеспечение устойчивого интеллектуального развития обучаемых, включающее формирование и развитие определенных качеств мышления, необходимых в жизни. Прежде всего, это абстрактное мышление и дедуктивное мышление, столь характерные для математиков-специалистов, а также эвристическое мышление и творческое мышление. Кроме того, будущему специалисту необходимо обладать логическим и алгоритмическим мышлением, навыками исследовательской деятельности. Важными целями математического образования являются и формирование математического стиля мышления, математической направленности ума, «свернутого» мышления, присущего творческим людям, развитие гибкости мышления, сообразительности.

Многие из приведенных общих целей математического образования имеют перспективную направленность, носят самый общий характер, в некотором смысле являются идеализированными, стратегическими (термин В. А. Тестова).

В подразделе 1.3.2. «Предмет математического анализа» обсуждается объект и предмет современной математики, метод математического моделирования и предмет математического анализа как области математики. Актуальность рассмотрения объекта сегодняшней математики объясняется тем обстоятельством, что математика в предыдущее и настоящее столетия сильно изменилась, она шагнула в своем развитии далеко вперед. Многие ее разделы стали еще более абстрактными, появились и совершенно новые, расширился круг приложений этой науки.

В трактовке предмета современной математики автор придерживается позиций Л. Д. Кудрявцева: математика изучает математические структуры. Рассмотрены различные характеризации понятия «математическая структура», при этом подчеркивается, что математическая структура может быть непосредственной математической моделью какого-либо реального явления. Если это не так, то она в той или иной степени может служить математическим аппаратом для изучения моделей реальных явлений. Приведены различные классификации математических моделей, обсуждается суть метода математического моделирования как метода изучения явлений посредством математических моделей.

В рамках данного подраздела анализируются известные в литературе трактовки предмета математического анализа. Следуя С. М. Никольскому, предметом математического анализа называем изучение функций и их обобщений методом пределов.

В подразделе 1.3.3. «Влияние предмета математического анализа на содержание обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций» подчеркивается важность изучения тех или иных структур математического анализа, которые непосредственно моделируют реальные процессы и явления окружающего нас мира. Отмечается, что иногда одни и те же структуры способны моделировать совершенно разные реальные явления. Например, производная функции может моделировать скорость, угловой коэффициент касательной к плоской кривой в заданной точке, линейную плотность в точке неоднородного стержня, силу тока в данный момент времени и т. д.

В исследовании показано, что на содержание математической подготовки студентов по дифференциальному и интегральному исчислению функций непрерывное воздействие должны оказывать динамичное расширение предмета математического анализа и тенденции развития ряда его направлений (в сочетании с определенным консерватизмом, связанным с продолжением российских традиций обучения анализу студентов в высшей школе). Обоснована целесообразность более обстоятельного знакомства студентов с неравенствами, которые играют большую роль в вопросах приложений дифференциального и интегрального исчисления, со свойствами выпуклых и логарифмически выпуклых функций, также имеющих значительные применения. При изучении основ анализа студентам полезно иметь дело не только с классическими утверждениями, но и развитием фактов.

- рассматриваются такие феномены математического образования, как его индивидуализация, дифференциация, гуманизация и гуманитаризация, интенсификация. Кроме перечисленных составляющих внешней среды конструируемой методической системы также осмысляются структура личности студента и закономерности ее развития, отдельные важные исследования последних лет, проведенные различными авторами в рамках дифференциального и интегрального исчисления функций. Таким образом, в данном разделе продолжается анализ методической системы на методологическом уровне.

Опираясь на исследования проблемы личности известными учеными (В. С. Леднев, Г. И. Саранцев и др.), в ее структуре выделяем мотивационный, операционально-действенный, эмоционально-волевой, нравственный компоненты. Показано, что установление соответствующих связей между компонентами структуры личности и конкретными видами математической деятельности при обучении студентов дифференциальному и интегральному исчислению может оказывать целенаправленное влияние на личность средствами математического анализа, владение такими связями позволяет осуществлять развитие личности студента-математика педвуза. Так, при освоении доказательств основных теорем дифференциального и интегрального исчисления у студента развивается логическая составляющая мышления, а при решении задач и поиске обобщений теорем – эвристическая составляющая. Реализация строгих доказательств утверждений отражается и на формировании морально-этических качеств личности. Лаконичные математические выкладки, неожиданные способы решения задач позволяют развивать эстетические чувства.

Говоря об индивидуальном подходе в обучении студентов, автор акцентирует внимание на гибком и умелом использовании преподавателем различных методов, форм и средств педагогического влияния на обучаемых, педагогическом сотрудничестве и взаимодействии с ними с целью достижения высоких результатов образовательной деятельности.

В данном разделе индивидуализация обучения дифференциальному и интегральному исчислению функций студентов-математиков в педвузе характеризуется следующими положениями: 1) обучаемые студенты должны иметь максимально возможную самостоятельность в выборе путей и средств практической реализации основных теоретических положений изучаемого раздела анализа; 2) студентам необходимо предоставить условия и возможности для специализации по отдельным направлениям дифференциального и интегрального исчисления; 3) в процессе обучения важно реализовать личностные возможности каждого студента – будущего учителя математики: методические, организаторские, научные.

Индивидуализация обучения способствует самостоятельному приобретению знаний, формированию умений и навыков, обеспечивает интенсификацию учебного процесса, глубину в усвоении студентами знаний. Она стимулирует опережающее обучение на различных этапах учения, формирует надежный исследовательский уровень обучения.

В работе дана обстоятельная характеристика феномена дифференциации обучения математике, проанализировано его хронологическое развитие. В отношении обучения студентов-математиков педвуза выделяются два типа дифференциации: внутренняя и внешняя. Внутренняя дифференциация учитывает индивидуальные особенности студентов в условиях работы преподавателя со всем курсом (потоком) или учебной группой. Внешняя же дифференциация характеризуется учетом индивидуальных особенностей обучаемых студентов в условиях специальной группы (в случае проектируемой методической системы обучения это, например, группа участников студенческого научно-исследовательского семинара, комплектуемая студентами разных курсов).

В характеризуемом разделе с опорой на исследования Т. А. Ивановой, Т. Н. Мираковой, Г. И. Саранцева и др. ученых также производится осмысление феноменов гуманизации и гуманитаризации математического образования.

Гуманизация – это феномен, направленный на создание максимально благоприятных условий для развития личности школьника или студента, на организацию условий для раскрытия способностей обучаемых, совершенствования их нравственной и творческой сторон, преодоления «обезличенности» образования. Гуманизация образования обусловливает его гуманитаризацию. В разделе отмечается, что в обширной литературе, посвященной исследованию феномена гуманитаризации образования, в это понятие вкладывался разный смысл. Автор в вопросе трактовок данного понятия придерживается позиций Т. Н. Мираковой и Г. И. Саранцева. «Подлинной сутью гуманитаризации математического образования является отражение в нем деятельностной концепции знания»9. Деятельностная сторона содержания обучения будущих педагогов дифференциальному и интегральному исчислению в работе отражается, в первую очередь, через реализацию деятельностных концепций работы с принципиальными теоремами и определениями основных понятий.

В этом же разделе в качестве составляющей внешней среды конструируемой методической системы рассматриваются некоторые важные новые результаты исследований и открытия в области вещественного анализа функций, восходящие, в основном, к 90-м гг. прошлого столетия, а также текущему десятилетию настоящего. Упоминаемые результаты являются важными с точки зрения их использования в вопросе обучения студентов педвуза основам математического анализа, а также привития обучаемым исследовательских навыков ведения научной работы. Новые факты и исследования касаются: различных подходов к построению курса дифференциального исчисления функций одной переменной и нескольких переменных (в частности, подхода, использующего понятие функции, дифференцируемой по Каратеодори), элементов негладкого анализа, теории неравенств и выпуклых функций, обобщений и развитий классических теорем анализа о среднем значении (Ролля, Лагранжа, Коши, Флетта, формулы Тейлора, правил Лопиталя–Бернулли), сведений об интегралах, некоторых вопросов аппроксимации функций.

В Главе II «Теоретические основы обучения студентов математического факультета педвуза дифференциальному и интегральному исчислению в контексте фундаментализации образования» изучается отражение идей фундаментализации образования в компонентах конструируемой методической системы обучения будущих учителей математики основам математического анализа. В частности, показывается влияние феномена фундаментализации математического образования на постановку целей обучения, отбор содержания обучения, выбор средств обучения. В данной главе анализ методической системы производится на теоретическом уровне.

В разделе 2.1 «Цели обучения студентов-математиков дифференциальному и интегральному исчислению функций» проводится анализ общеобразовательных, развивающих, воспитательных и практических целей обучения указанной дисциплине в контексте подготовки будущих учителей.

Одной из важнейших развивающих целей является приобщение обучаемых к творческой деятельности средствами математического анализа. На пути ее достижения принципиальным является вовлечение студентов в научно-исследовательскую работу.

Автор подробно останавливается также на важности постановки цели, восходящей к формированию у студентов эвристического мышления. В исследовании показано, что формирование творческого, эвристического мышления должно стать одним из самых важных моментов в совершенствовании методов обучения студентов. В курсе дифференциального и интегрального исчисления необходимо специально рассматривать вопросы, прививающие навыки самостоятельного поиска новых закономерностей и связей и знакомящие с достаточно общими, едиными приемами самостоятельного целенаправленного поиска решения задач и доказательства теорем.


загрузка...