Повышение достоверности результатов диагностирования газотурбинных двигателей сцинтилляционным методом с целью снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов (01.06.2009)

Автор: Дроков Виктор Григорьевич

Несмотря на большие успехи в создании высоконадежных газотурбинных двигателей (ГТД), в эксплуатации продолжают возникать отказы двигателей, приводящие к авиационным происшествиям, снижению уровня безопасности полетов в гражданской авиации и боеготовности в военной авиации, а также к возникновению чрезвычайных ситуаций при эксплуатации воздушных судов и к снижению эффективности применения двигателей. Поэтому проблема обеспечения эффективной и безопасной эксплуатации ГТД в настоящее время является одной из приоритетных и актуальных и имеет важное народно-хозяйственное значение.

Решение данной проблемы затрудняет несовершенство применяемых методов контроля и диагностики технического состояния ГТД. Вследствие этого с эксплуатации снимаются исправные ГТД, имеющие запас ресурса; в то же время отдельные двигатели в пределах назначенных ресурсов отказывают в полете.

В настоящее время в гражданской авиации и Вооруженных силах РФ эксплуатируются ГТД выпущенные, в основном, 15-30 лет тому назад. Значительная часть парка этих двигателей близка к условиям полной выработки назначенных и межремонтных ресурсов и сроков службы. Возникла актуальная техническая задача обеспечения безопасной и эффективной эксплуатации таких ГТД путем увеличения (продления) назначенных ресурсов, сроков службы и снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.

С другой стороны, создание ГТД новых поколений требует современных подходов к проблеме контроля, диагностики и управления их техническим состоянием, учитывающих особенности их применения и большие ресурсы.

Комплекс указанных причин порождает общую проблему повышения безопасности полетов и эффективности применения ГТД на основе разработки новых и совершенствования известных методов технической диагностики. К ним, в частности, относится метод, основанный на анализе частиц в масле системы смазки двигателя.

Значительный вклад в разработку и внедрение инструментальных методов диагностики, основанных на измерении параметров частиц, отделяемых от повреждаемых деталей в системе смазки ГТД, внесли работы ЦИАМ им П.И. Баранова, Гос НИИ ГА, 13 ГНИИ Минобороны России, ОАО «Авиадвигатель», ОАО «НПО «Сатурн», ОАО «Аэрофлот», а также работы отечественных ученых, в том числе выполненные под руководством Биргера И.А., Крагельского И.В., Кузнецова Н.Д., Смирнова Н.Н., Буше Н.А., Калашникова С.И., Степанова В.А., Ребиндера П.А., Гаркунова Д.Н., Степаненко В.П. и др.

Вместе с тем, в опубликованных трудах недостаточное внимание уделено совершенствованию методов диагностики технического состояния элементов конструкции ГТД, обобщению и систематизации данных по закономерностям повреждаемости ГТД на основе анализа металлических частиц, отделяемых от повреждаемых деталей, формированию комплексной оценки технического состояния ГТД.

В итоге остается неустраненным ряд серьезных недостатков в разработке теоретических и методологических основ способов диагностирования газотурбинных двигателей с использованием комплексной информации о параметрах металлических частиц, отделяемых от повреждаемых деталей в системе смазки двигателя.

Используемые в настоящее время инструментальные методы диагностики (атомно-эмиссионный, рентгеноспектральный, феррографический) в подавляющем большинстве случаев не позволяют предсказать повреждение по появлению металлических частиц, отделяемых от повреждаемых деталей и локализовать поврежденный узел. На это указывают данные ОАО «НПО «Сатурн»; они свидетельствуют, что лишь 5% двигателей из исследованных с помощью оборудования типа БАРС, МФС отстраняются от эксплуатации с повреждениями по превышению контрольных значений количества металлической примеси в пробе масла.

Основными причинами низкой достоверности результатов диагностики традиционным методом являются:

- недостаточность количества информации о параметрах частиц повреждаемых деталей, определяемых традиционными способами;

- неучет параметров частиц, отделяющихся от повреждаемых деталей и накапливающихся на основном маслофильтре.

Поэтому оценка технического состояния авиационных двигателей по состоянию масла системы смазки с помощью оборудования типа БАРС, МФС и визуального контроля наличия металлических частиц на магнитных пробках, магнитных стружкосигнализаторах, фильтрах-сигнализаторах в недостаточной для эксплуатации степени обеспечивает безопасность полетов и эффективность применения ГТД.

Актуальность разработки и внедрения инструментальных методов технической диагностики нового поколения диктуется объективной необходимостью в обеспечении предприятий, эксплуатирующих авиационную технику, оперативной и высокодостоверной информацией о фактическом состоянии авиадвигателей. Эта информация позволяет повысить эффективность эксплуатации по техническому состоянию авиационных ГТД и уровень безопасности полетов.

Настоящая диссертационная работа посвящена решению проблемы повышения достоверности результатов диагностирования газотурбинных двигателей сцинтилляционным методом с целью снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.

Цель и задачи исследования

Целью диссертационной работы является разработка новых научно-обоснованных технических и технологических решений, создание диагностической аппаратуры нового поколения на основе спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей, разработка сцинтилляционного метода диагностики, обеспечивающего повышение уровня безопасности эксплуатации газотурбинных двигателей и снижение рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.

Для достижения поставленной цели решены следующие взаимосвязанные научные и практические задачи:

- разработана математическая модель газодинамического течения газа в цилиндрических разрядных камерах СВЧ плазмотронов и движения одиночных металлических частиц, учитывающая движение, нагрев, испарение этих частиц и различные способы стабилизации разряда;

- исследованы физические процессы в разрядной камере источника возбуждения спектров (СВЧ плазмотрона) сцинтилляционного спектрометра и определены условия оптимального выделения сцинтилляционного сигнала;

- разработаны теоретические и практические положения создания диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации;

-разработан атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частицы в пробах смазочных масел, способ его градуирования по равновесной и импульсной составляющим сигнала;

- систематизированы и обобщены закономерности изменения технического состояния элементов конструкции ГТД, омываемых смазочным маслом, в зависимости от параметров частиц, отделяемых от повреждаемых деталей;

- установлены новые диагностические признаки, связывающие параметры частиц, отделяемых от повреждаемых деталей и накапливаемые на основном маслофильтре, с техническим состоянием двигателя;

- разработана новая технология диагностирования по результатам сцинтилляционных измерений параметров частиц повреждаемых деталей, выявляемых в пробах масел и смывах с основного маслофильтра.

Экспериментальные исследования проводились:

- на ЛА в условиях эксплуатации;

- на стендах заводов авиационной промышленности;

- в лабораторных условиях на образцах;

- на аварийных ГТД, поступивших на исследование для установления причины отказа.

Научная новизна

Научная новизна диссертационного исследования определяется следующими результатами, полученными лично автором:

1. Разработаны теоретические и практические положения создания диагностической аппаратуры нового поколения, реализующие сцинтилляционный способ регистрации, измерения и анализа параметров частиц повреждаемых деталей, выявляемых в пробах смазочных масел.

2. Создана математическая модель газодинамического течения газа в цилиндрических разрядных камерах СВЧ плазмотронов и движения одиночных металлических частиц, учитывающая движение, нагрев, испарение этих частиц и различные способы стабилизации разряда.

3. Исследованы газодинамические условия в разрядной камере с закрученным потоком газа, при которых:

- введенные в разряд металлические частицы размером от единиц до 100 мкм не выбрасываются на стенку камеры;

- каждой введенной в разряд металлической частице соответствует один сцинтилляционный импульс.

4. Проанализированы закономерности влияния передаточной функции источника возбуждения спектров и распределения частиц по размерам на распределения сигналов.

5. Разработан способ динамической дискриминационной фильтрации сцинтилляционного аналитического сигнала.

6. Разработан атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частиц в пробах смазочных масел.


загрузка...